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Abstract: The trend toward a more fiercely competitive and strictly environmentally regulated 

electricity market in several countries, including China has led to efforts by both industry and 

government to develop advanced performance evaluation models that adapt to new evaluation 

requirements. Traditional operational and environmental efficiency measures do not fully consider 

the influence of market competition and environmental regulations and, thus, are not sufficient for 

the thermal power industry to evaluate its operational performance with respect to specific 

marketing goals (operational effectiveness) and its environmental performance with respect to 

specific emissions reduction targets (environmental effectiveness). As a complement to an 

operational efficiency measure, an operational effectiveness measure not only reflects the capacity of 

an electricity production system to increase its electricity generation through the improvement of 

operational efficiency, but it also reflects the system’s capability to adjust its electricity generation 

activities to match electricity demand. In addition, as a complement to an environmental efficiency 

measure, an environmental effectiveness measure not only reflects the capacity of an electricity 

production system to decrease its pollutant emissions through the improvement of environmental 

efficiency, but it also reflects the system’s capability to adjust its emissions abatement activities to 

fulfill environmental regulations. Furthermore, an environmental effectiveness measure helps the 

government regulator to verify the rationality of its emissions reduction targets assigned to the 

thermal power industry. Several newly developed effectiveness measurements based on data 

envelopment analysis (DEA) were utilized in this study to evaluate the operational and 

environmental performance of the thermal power industry in China during 2006-2013. Both 

efficiency and effectiveness were evaluated from the three perspectives of operational, environmental, 

and joint adjustments to each electricity production system. The operational and environmental 

performance changes over time were also captured through an effectiveness measure based on the 

global Malmquist productivity index. Our empirical results indicated that the performance of China’s 

thermal power industry experienced significant progress during the study period and that policies 
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regarding the development and regulation of the thermal power industry yielded the expected effects. 

However, the emissions reduction targets assigned to China’s thermal power industry are loose and 

conservative. 

Keywords: Efficiency; Environmental effectiveness; Joint performance; Operational effectiveness 

 

1 Introduction 

The thermal power industry remains a major source of China’s greenhouse gas emissions and air 

pollution. In 2013, total carbon dioxide emissions in China were 9.77 billion tons, and the thermal 

power industry was responsible for 38% of this total. In order to control emissions, China’s 

government formulated energy conservation and emissions reduction targets in the last two decades, 

such as the Shutting Down of Small Thermal Power Units Action (Wang et al., 2016a). In addition, in 

the 11th Five Year Plan (FYP) and the 12th FYP periods (2006-2010 and 2011-2015), China’s 

government listed specific energy conservation and emissions reduction targets for the thermal 

power industry. However, because of resource endowment, the growing demand for electricity, and 

the time required to structurally adjust the electricity industry, it is not realistic to change the 

situation that thermal power is the dominant component in China’s electricity mix in the short term. 

China’s thermal power industry needs, on the one hand, to reduce pollutant emissions for 

environmental protection and, on the other hand, to improve production efficiency to meet the 

market demand. Therefore, improving both operational performance and environmental 

performance is considered the core for the sustainable development of China’s thermal power 

industry. 

Frontier analysis is a widely used method to evaluate productive efficiency in the electric power 

industry. Nonparametric linear programming-based data envelopment analysis (DEA) helps analysts 

to estimate the production function without a functional form assumption and to identify a 

productive efficiency frontier by defining efficiency as a ratio of a weighted sum of multiple outputs 

to a weighted sum of multiple inputs. In the case where both industries have the same levels of input 

resources, a thermal power industry is considered efficient if it generates at least as much electricity 

as another observed thermal power industry. 

Several previous studies use DEA to evaluate the operational efficiency of an electric power industry. 

For example, Sueyoshi and Goto (2001) employ a slack-adjusted DEA to evaluate the operational 

efficiency of the electric power generating companies in Japan from 1984 to 1993. They claim that 

their DEA results imply that integrating generation and transmission may not enhance efficiency. 

Chen (2002) measures the efficiency of 22 distribution districts of the Taiwan Power Company and 

finds that the first task of inefficient distribution districts is to determine the critical targets that can 

be used as benchmarks for guiding further improvement. Ma and Zhao (2015) evaluate the 

operational efficiency of hundreds of power plants in China from 1997 to 2010 based on DEA and SFA 

methods. They find that a large proportion of the overall efficiency improvement occurred in the last 



 

decade but that this improvement is not likely to continue. Some studies extend the DEA models to 

include undesirable outputs, and in addition, evaluate environmental efficiencies. For example, Welch 

et al. (2009) give a performance analysis of power generation companies in the U.S. from 2002 to 

2005. Their results show that both fuel costs and carbon pollution can be reduced simultaneously, 

given the current technology, by increasing the technical efficiency of inefficient plants to a level 

closer to that of their more efficient peers. Sueyoshi et al. (2010) use the DEA method to evaluate the 

performance of coal-fired power plants under the U.S. Clean Air Act (CAA). They find that the CAA 

became increasingly effective in terms of operational and unified efficiency measures. Yang and 

Pollitt (2009) evaluate two data sets of China’s coal-fired power plants, one containing 221 plants 

and one containing 582 plants, in 2002 using a traditional DEA model and several uncontrollable 

variable-adjusting DEA models. Their results confirm the hypothesis that at least some power plants 

with relatively low efficiency scores in the traditional model achieve these results partly due to their 

relatively unfavorable operating environments. Bi et al. (2014) estimate the total factor energy 

efficiency of China’s thermal power generation system in each provincial region from 2007 to 2009 

with DEA models. They find that environmental efficiency plays a significant role in the energy 

performance of China’s thermal generation sector. There also have been many studies using DEA to 

evaluate the energy and environmental efficiency and the production performance of the electric 

power industry (e.g., Chitkara, 1999; Pahwa et al., 2003; Azadeh et al., 2008; Feroz et al., 2009; 

Picazo-Tadeo et al., 2011; Chen et al., 2012; Shrivastava et al., 2012; Wang et al., 2012; Macpherson et 

al., 2013; Mou, 2014; Ignatius et al., 2016; Wang et al., 2016b, 2016c; Wang and Wei, 2016). 

In recent years, fierce market competition as well as strict environmental regulation both in China 

and abroad have led to the development of a performance evaluation method that applies to both 

market and environmental performance. However, the above studies only consider typical efficiency 

evaluations and do not fully consider the influence of market competition (when desirable outputs 

need to be sold and not just produced) and environmental regulation (when undesirable outputs are 

regulated). Thus, efficiency estimation alone is not enough to evaluate the operational and 

environmental performance of an industry relative to specific targets such as sales and emissions 

control. In this study, performance estimation that takes these specific targets into account is defined 

as effectiveness. Therefore, the measurement of operational performance can be divided into two 

parts: operational efficiency (which is evaluated to improve the ability of production) and operational 

effectiveness (which is evaluated to improve the ability of market competition). When the operational 

performance of the thermal power industry is measured, electricity production is commonly 

considered to be the desirable output. However, electricity should be consumed when it is produced 

because it cannot usually be stored; otherwise, the inputs for thermal power production are wasted. 

The amount of electricity consumed is defined as the demand limit. In our study, the concept of the 

demand limit is neither the lower limit nor the upper limit of electricity demand but is used to 

capture the gap between electricity generation and electricity consumption in a region, which reveals 

the effort of a region to match its electricity generation to the local electricity demand. Excess 

production, which means that more electricity is generated than the local electricity demand, will 



 

imply that some electricity cannot be sold or consumed, and the associated inputs are wasted. On the 

other hand, insufficient production, which means that less electricity is generated than the local 

demand, will imply that local electricity generation cannot meet local demand and will interrupt 

normal economic activity. Thus, from the perspective of the thermal power industry, a measure of 

operational performance should include not only the capacity to generate more electricity given the 

same inputs (operational efficiency) but also the capacity to meet electricity demand (operational 

effectiveness). 

Similarly, the measurement of environmental performance should also include two components: 

environmental efficiency, which is evaluated to improve abatement ability, and environmental 

effectiveness, which is evaluated to improve the rationality of environmental regulations. It is 

generally known that when thermal power is generated, pollutant emissions are generated at the 

same time. In order to protect the environment, the government could assign an emissions limit to 

the thermal power industry, and, in this case, both the capacity of the thermal power industry to 

decrease the amount of emissions and the rationality of the emissions limit assigned by the regulator 

should be evaluated. If the emissions reduction technology of a thermal power industry is advanced 

(high efficiency) but its emissions are still above the emissions limit assigned by the regulator (low 

effectiveness), the emissions limit assigned to the thermal power industry is considered to be tight. 

On the contrary, if the emissions reduction technology of a thermal power industry is backward (low 

efficiency) but its emissions are still less than emissions limit assigned by the regulator (high 

effectiveness), we assume a loose limit is assigned to the thermal power industry. Therefore, from the 

perspective of the government regulator, a measure of environmental performance should include 

not only the capacity of the thermal power industry to decrease the amount of emissions 

(environmental efficiency) but also the rationality of the emissions limit assigned to the thermal 

power industry (environmental effectiveness). 

Few studies have contributed to measure effectiveness with respect to market competition. For 

example, Fielding et al. (1985) consider the influence of a sales limit and give an evaluation of the 

transportation system in terms of the production and consumption processes. In addition, Yu and Lin 

(2008) measure the effectiveness of 20 selected railway stations in 2002 under the influence of the 

consumption process. Lee and Johnson (2015) evaluate the profit effectiveness of 13 U.S. airlines 

taking the sales effect into account. Golany et al. (1993) consider the goal of the evaluation and argue 

that effectiveness measures should characterize an organization’s performance when trying to reach 

specific goals or objectives. 

To achieve sustainable development, the thermal power industry should focus not only on improving 

its operational performance but also on increasing its environmental performance. Thus, from the 

perspective of the thermal power industry, the joint performance of operation and abatement should 

be evaluated. The joint performance evaluation not only measures the capacity of the thermal power 

industry to optimize its electricity production and emissions reduction, but it also measures the 

industry’s capacity to meet the electricity demand and emissions control targets. Therefore, the joint 



 

performance evaluation includes two parts: joint efficiency and joint effectiveness. To the best of our 

knowledge, few studies have evaluated effectiveness with regard to both market competition 

(demand) for the desirable outputs and environmental regulation (emissions control) of the 

undesirable outputs. Lee (2015) provides a model to evaluate the electricity generation performance 

of 50 U.S. states with power plants operating in 2010 under the influence of demand and emissions 

limits, and Wang et al. (2016c) provide an effectiveness estimation of China’s regional thermal power 

industry considering the electricity sales effect. However, these studies did not separately estimate 

the operational effectiveness with respect to the demand limit and the environmental effectiveness 

with respect to the emissions limit, and, thus, the estimation results were somewhat lacking specific 

policy implications on the design of emissions control regulations. The measure of operational 

effectiveness with respect to the demand limit helps a thermal power industry to improve its capacity 

for adjusting electricity generation to meet the demand, and the measure of environmental 

effectiveness with respect to the emissions limit helps the government to improve the rationality of 

the emissions limit assigned to the thermal power industry. Furthermore, joint effectiveness helps 

the thermal power industry to improve its capacity for adjusting both its production and abatement 

activities so as to appropriately meet both the electricity demand and the emissions control target. 

However, to the best of our knowledge, measures of the environmental effectiveness of China’s 

thermal power industry are very limited. Motivated by these research gaps, in this study, we not only 

provide a traditional efficiency measure of China’s thermal power industry, but we also evaluate i) the 

operational effectiveness considering the electricity demand limit, ii) the environmental effectiveness 

regarding the pollutant emissions limit, and iii) the joint effectiveness identifying the capacity to both 

meet electricity demand and fulfill the emissions control target of China’s thermal power industry. 

The remainder of this paper is organized as follows. Section 2 introduces the models of operational 

and environmental efficiency and the effectiveness measures for the thermal power industry. Section 

3 quantifies the strategic evolution of the performance of the thermal power industry using the global 

Malmquist productivity index. Section 4 provides an empirical study of China’s thermal power 

industry. Section 5 concludes this paper. 

 

2 Efficiency and effectiveness measurements 

In this section, we put forward three groups of measurements from three perspectives: operational 

efficiency and effectiveness, environmental efficiency and effectiveness, and joint efficiency and 

effectiveness. 

2.1 Operational efficiency and operational effectiveness measurements 

Considering a multiple-input and multiple-output thermal power production process, let 𝑥 ∈ 𝑅+
𝐼  

denote a vector of input variables, 𝑦 ∈ 𝑅+
𝐽  denote a vector of desirable output variables, and 𝑏 ∈ 𝑅+

𝑄 

denote a vector of undesirable output variables. We define the production possibility set T as 𝑇 =



 

{(𝑥, 𝑦, 𝑏) ∈ 𝑅+
𝐼+𝐽+𝑄: 𝑥 can produce (𝑦, 𝑏)}. Let I = {1,2,…,I} be the set of input indices, j = {1,2,…,J} be 

the set of desirable output indices, q={1,2,…,Q} be the set of undesirable output indices, k = {1,2,…,K} 

be the set of decision making unit (DMU) indices, and t = {1,2,…,T} be the set of year indices. Index r 

represents a specific DMU and is an alias of index k. xikt is the ith input of the kth DMU in year t, yikt is 

the jth desirable output of the kth DMU in year t, and bqkt is the qth undesirable output of the kth DMU 

in year t. We use the directional distance function (DDF) to expand the desirable outputs for 

efficiency estimation. Let 𝑔𝑗
𝑦
 be the nonnegative directional vector associated with the jth desirable 

output. Previous studies have pointed out that the choice of the direction vectors in the DDF impacts 

the estimation results (Fa re et al., 2013; Benjamin et al., 2014; Wang et al., 2016). In many studies, 

the direction vectors are predetermined with a fixed value, such as 0, +1, or -1, or with observed 

input and output values. However, these measures are considered somewhat arbitrary and less 

economically or politically meaningful in efficiency evaluation. Since choosing the optimal direction 

vectors in the DDF is an unsolved issue, in this study, we follow the method proposed by Fa re et al. 

(2013) and Benjamin et al. (2014) to generate an endogenous direction based on an exogenous 

normalization constraint. Model (1) is put forward as an operational efficiency measure: 
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(1) 

where the decision variable λk is the intensity weight multiplier of the convex combination of the kth 

DMU, μk is the decision variable for the weak disposability of Podinovski’s technology (Kuosmanen 

2005; Kuosmanen and Podinovski, 2009), 𝑔𝑗
𝑦
 is an endogenous directional vector, and θo is the 

optimal solution that reveals the inefficiency. If θo = 0, the associated DMU is efficient; otherwise, it is 

inefficient. Note that θo does not intuitively reflect efficiency (since the efficiency values are usually 

defined over [0,1]). Thus, we calculate the operational efficiency 𝐷𝑗𝑡
𝑜  of the jth desirable output of 

the rth DMU in year t as in Equation (2): 

( , , )
jrto

jt t t t o y

jrt j
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y g
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+
                                                                 

(2) 

If 𝐷𝑗𝑡
𝑜 = 1, the associated DMU is operationally efficient; otherwise, it is operationally inefficient. 



 

Note that Model (1) is a nonlinear programming model that can be further transformed into a linear 

programming model, as in Model (3), by defining the direction vector 
1j j

Jy

j y yj
g  

=
=  , which 

satisfies 
1

1
J y

jj
g

=
=  (Fa re et al., 2013; Lee 2015). 
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(3) 

Next, we define operational effectiveness by considering electricity demand with Model (4): 
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(4) 

In Model (4), we define 𝑦𝑃 ∈ 𝑅+
𝐽  as the penalized desirable outputs to quantify the gap between the 

desirable output level and the demand level. Producing less electricity than the demand will lead to 

an electricity shortage cost derived from the cost of purchasing electricity from other plants, whereas 

producing more electricity than the demand will lead to wasted resources of coal and other materials. 

We develop the following generalized effectiveness measure. Let djkt represent the demand limit of 

the jth desirable output of the kth thermal power industry in the tth year, which is further used to 

calculate the penalized output 𝑦𝑗𝑘𝑡
𝑃 . If 

jkt jkty d , then the opportunity to sell 
jkt jktd y−  units of 

electricity is lost, and we set 𝑦𝑗𝑘𝑡
𝑃 = yjkt – αjkt (djkt – yjkt) ≥ 0. If yjkt > djkt, then yjkt – djkt

 
units of electricity 

inventory or abandon are generated, and we set 𝑦𝑗𝑘𝑡
𝑃 = djkt – βjkt (yjkt – djkt) ≥ 0. When calculating 𝑦𝑗𝑘𝑡

𝑃 , 

we use the penalty parameters αjkt ≥ 0 and βjkt ≥ 0 to control the tradeoff effects of electricity 

shortages and waste resources on the effectiveness measurements. 

As in Equation (2), we calculate the operational effectiveness 𝐷𝑗𝑡
𝑜𝐸  in Equation (5): 
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(5) 

The difference between Model (1) and Model (4) is the utilization of desirable output (electricity 

generation). In Model (4), we use the penalized output to take into account the influence of the 

demand limit. In Equation (5), if 𝐷𝑗𝑡
𝑜𝐸  equals 1, the associated DMU is operationally effective. 

Otherwise, it is operationally ineffective. 

Figure 1 illustrates a two-dimensional strategic position (SP) between operational efficiency 𝐷𝑗𝑡
𝑜  and 

operational effectiveness 𝐷𝑗𝑡
𝑜𝐸 . We use the mean values of the operational efficiency scores and the 

operational effectiveness scores of all DMUs to indicate low and high categories. (i) If the operational 

efficiency and operational effectiveness scores are both low, it implies that the thermal power 

industry performs badly both in electricity production and in meeting the local electricity demand, 

and, thus, further improving the technical efficiency and developing the electricity sales market are 

both necessary for this thermal power industry. We label such thermal power industries as Laggard 

(Lag). (ii) If the operational efficiency score is high but the operational effectiveness score is low, it 

shows that the thermal power industry focuses on electricity generation but ignores the need to 

match its electricity generation to the local electricity demand. In this case, the thermal power 

industry should not only focus on operational productivity improvement but also pay more attention 

to balancing its electricity supply and demand. We label such thermal power industries as Production 

Focus (PF). (iii) If the operational efficiency score is low but the operational effectiveness score is 

high, it means that the electricity generation of the thermal power industry matches the local 

electricity demand, but the electricity generation is technically inefficient. This type of thermal power 

industry should improve its generating technology and use its inputs more efficiently. We label such 

thermal power industries as Demand Focus (DF). (iv) If the operational efficiency and operational 

effectiveness scores are both high, the thermal power industry performs well both in electricity 

generation and in matching its electricity generation to the local demand, and, thus, we label such 

thermal power industries as Leader (L). The arrows in Figure 1 indicate the suggested paths for 

operational performance improvement. 

[Insert Figure 1 here] 

 

2.2 Environmental efficiency and environmental effectiveness measurements 

The traditional production possibility set and related DEA models for efficiency evaluation assume 

that the desirable outputs are freely disposable, but this property cannot be directly applied to 

undesirable outputs. Intuitively, we can reduce the level of the undesirable output, which in turn will 

result in a proportionate reduction of the desirable outputs. In other words, the strong disposability 

assumption in efficiency evaluation ignores the possibility of decreasing undesirable outputs by 



 

reducing the activity level, i.e., a proportional contraction of desirable outputs and undesirable 

outputs is feasible simultaneously. We call this property weak disposability (Fa re and Grosskopf, 

2003; Kuosmanen, 2005). Strong disposability of inputs and desirable outputs means that given 

(𝑥, 𝑦, 𝑏) ∈ 𝑇 , if 𝑥′ ≥ 𝑥  and 0 ≤ y ≤ 𝑦′ , then (𝑥′, 𝑦′, 𝑏) ∈ 𝑇 , and weak disposability of desirable 

outputs and undesirable outputs means that given (𝑥, 𝑦, 𝑏) ∈ 𝑇, if 0 ≤ 𝜌 ≤ 1, then (𝑥, 𝜌𝑦, 𝜌𝑏) ∈ 𝑇. 

The weak disposability of desirable and undesirable outputs is commonly assumed when taking 

undesirable outputs into the production process. To address the issue, we use the weak disposability 

of Podinovski’s convex technology, which follows the convexity axiom and builds the minimal weakly 

disposable technology by assuming strong disposability of inputs and desirable outputs. Podinovski’s 

technology assumes strong disposability of all inputs and all outputs, whereas Kuosmanen’s 

technology excludes bad outputs from this assumption (Kuosmanen and Podinovski 2009). Similar to 

Lee (2015), since this study penalizes bad outputs that violate the emissions limit, one should notice 

that these penalized bad outputs may be outside of the production possibility set without the strong 

disposability of bad outputs. 

Let 𝑔𝑞
𝑏 be the nonnegative directional vector associated with the qth undesirable output. Model (6) 

calculates the environmental efficiency: 
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(6) 

The variables and parameters in Model (6) have the same meanings as in Model (1). Similarly, the 

optimal solution θe of Model (6) only reflects the environmental inefficiency. Thus, the environmental 

efficiency 𝐷𝑞𝑡
𝑒  is calculated as in Equation (7): 
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Next, we define the environmental effectiveness by considering the emissions limit through Model 

(8): 
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In Model (8), we define 𝑏𝑃 ∈ 𝑅+
𝑄 as the penalized or benefited undesirable outputs to quantify the 

excess or insufficient emissions with respect to the emissions limit. Let lqkt represent the emissions 

limit of the qth undesirable output of the kth thermal power industry in the tth year, and calculate the 

penalized or benefited output 𝑏𝑞𝑘𝑡
𝑃 . If bqkt > lqkt, then bqkt – lqkt units of excess undesirable outputs are 

penalized, and we set 𝑏𝑞𝑘𝑡
𝑃 = bqkt + γqkt(bqkt – lqkt) ≥ 0, where γqkt ≥ 0 is the penalty parameter. On the 

contrary, if bqkt < lqkt, then lqkt – bqkt units of emissions allowances are saved and can be sold if there is 

a carbon trading market. In such a circumstance, although excess emissions reduction will lead to a 

decrease in electricity generation, the power industry can benefit from emissions allowance trading, 

and the entire society will benefit from the emissions reduction. Thus, we set 𝑏𝑞𝑘𝑡
𝑃 = bqkt – δqkt(lqkt – 

bqkt) ≥ 0, and δqkt ≥ 0 is the benefit parameter. θeE is the optimal solution to Model (8). It measures the 

environmental ineffectiveness and can be utilized to calculate the environmental effectiveness 𝐷𝑞𝑡
𝑒𝐸 , 

as in Equation (9): 
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Similar to the definition of the strategic position of the operational performance, Figure 2 illustrates a 

two-dimensional strategic position between environmental efficiency 𝐷𝑞𝑡
𝑒  and environmental 

effectiveness 𝐷𝑞𝑡
𝑒𝐸 . We use the mean values of the environmental efficiency scores and environmental 

effectiveness scores of all DMUs to indicate low and high categories. (i) If the environmental 

efficiency and environmental effectiveness scores are both low, it shows that the emissions of the 

thermal power industry are higher than those of other thermal power industries that consume the 

same amount of input resources because of technical inefficiency in emissions reduction. In addition, 

considering the emissions limit, this thermal power industry does not match its emissions reduction 

effort to its emissions reduction target. We label such thermal power industries as Laggard (Lag). (ii) 

If the environmental efficiency score is high but the environmental effectiveness score is low, it 

indicates that there is a tight emissions limit for the thermal power industry. The high environmental 



 

efficiency shows that the power industry is technically efficient in emissions reduction, but its 

emissions reduction burden is overweight, which results in low environmental effectiveness. In this 

case, the emissions reduction target assigned by the government should be loosened. We label such 

power industries as Tight Limit (TL). (iii) If the environmental efficiency score is low but the 

environmental effectiveness score is high, it indicates that there is a loose emissions limit for the 

power industry. The low environmental efficiency reflects that the power industry is technically 

inefficient in emissions reduction, and its emissions limit is loose, which results in high 

environmental effectiveness. In this case, the emissions reduction target assigned by the government 

should be tightened. We label such thermal power industries as Loose Limit (LL). (iv) If both the 

environmental efficiency and the environmental effectiveness scores are high, the power industry 

performs well in emissions reductions and matches its emissions reduction effort to the 

government-assigned emissions reduction target. We label such thermal power industries as Leader 

(L). The arrows in Figure 2 indicate the suggested paths for environmental performance 

improvement. 

[Insert Figure 2 here] 

 

2.3 Joint efficiency and joint effectiveness measurements 

Up to now, we separately provided measures of operational performance in Models (1) and (4) and 

measures of environmental performance in Models (6) and (8), respectively. However, the power 

industry should not just focus on how to increase its operational performance while ignoring efforts 

to improve its environmental performance or, on the contrary, only focus on improving its 

environmental performance without pay attention to increasing its operational performance. The 

trend toward a more fiercely competitive and strictly environmentally regulated electricity market 

requires the efforts of the power industry to simultaneously improve both its operational and its 

environmental performance. In this section, we define this combined operational and environmental 

performance as the joint performance, which includes both joint efficiency and joint effectiveness. 

Next, we put forward Model (10) for calculating the joint efficiency: 
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(10) 



 

Taking into account the demand limit and the emissions limit, Model (11) calculates the joint 

effectiveness: 
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(11) 

Similar to the calculations of operational and environmental efficiency and effectiveness, we put 

forward 𝐷𝑡
𝑜𝑒 and 𝐷𝑡

𝑜𝑒𝐸  to evaluate the joint efficiency and joint effectiveness in Equations (12) and 

(13): 
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in which 
oe  and 

oeE  reflect the joint inefficiency and the joint ineffectiveness, respectively. ω1 

and ω2 represent the importance of operational performance and environmental performance, 

respectively, in evaluating the joint performance. 

The four strategic positions based on the joint performance can be correspondingly derived. Figure 3 

illustrates a two-dimensional strategic position between joint efficiency and joint effectiveness. We 

use the mean values of the joint efficiency scores and the joint effectiveness scores of all DMUs to 

indicate a low and a high category. (i) If the joint efficiency and joint effectiveness scores are both 

low, it reflects that the thermal power industry has the potential to improve both its operational and 

its environmental performance. Specifically, the thermal power industry needs to improve its 

technical efficiency both in electricity generation and emissions reduction. In addition, the power 

industry should pay more attention to matching its electricity generation to its electricity demand or 

should enlarge its market share so as to improve its operational effectiveness, and it should pay more 

attention to matching its emissions reduction effort to its emissions limit. We label such thermal 



 

power industries as Laggard (Lag) in joint performance. (ii) If the joint efficiency score is high but the 

joint effectiveness score is low, it reflects that the thermal power industry leads in using its input 

resources for electricity generation, but it may waste resources by generating more electricity than 

local demand, and it ignores the realization of the emissions reduction target. We label such power 

industries as Production Focus (PF) in joint performance. (iii) If the joint efficiency score is low but 

the joint effectiveness score is high, it reflects that the power industry pays more attention to 

matching its emissions reduction target but fails to efficiently generate electricity and reduce 

emissions. We label such thermal power industries as Environment Focus (EF) in joint performance. 

(iv) If both the joint efficiency and the joint effectiveness scores are high, it indicates that the power 

industry performs well in electricity generation and emissions reduction as well as in developing 

new markets and realizing the emissions reduction target. We label such thermal power industries as 

Leader (L) in joint performance. The arrows in Figure 3 indicate the suggested paths for joint 

performance improvement. 

[Insert Figure 3 here] 

 

In the electric power industry, if a capacity surplus happens, it will cause wasted input resources or 

inventory holding costs. However, a capacity shortage in the electric power industry will result in 

negative effects on normal life or economic activity. It is generally known that a capacity shortage 

will lead to more serious consequences. Thus, following Lee (2015) and Wang et al. (2016c), we set 

αjkt = 1 and βjkt = 0.01. In terms of emissions control, any amount of emissions less than emissions 

limit is meaningful and should be encouraged; however, we cannot take any action to encourage an 

increase in the amount of emissions. Therefore, we set the benefit parameter 0qkt = . On the 

contrary, too many emissions should be penalized seriously. Thus, we set γqkt = 0.01, according to Lee 

(2015). As mentioned above, ω1 and ω2 represent the importance of the operational performance and 

the environmental performance in joint performance evaluation, and, in this study, we set ω1 = ω2 = 

0.5, indicating that improving the operational performance and improving the environmental 

performance are equally important to improving the joint performance. The parameters αjkt, βjkt, γqkt, 

δqkt, ω1, and ω2 can be flexibly adjusted according to the preference of the policy maker. For instance, 

if improving the environmental performance is preferred, we can increase the values on γqkt and ω2. 

To summarize this section, we provide Figure 4 to illustrate the relationship between the proposed 

three performance measurements based on a specific case with one input, one desirable output, and 

one undesirable output for the convenience of illustration. 

[Insert Figure 4 here] 

 

The three-dimensional coordinate image in Figure 4 is interpreted as follows: the x-axis represents 

the input, the y-axis represents the desirable output, and the b-axis represents the undesirable 



 

output. Point F represents a thermal power industry sector. The plane denoted by line D0D1 and line 

D0D2 indicates the electricity demand limit, and the plane denoted by line L0L1 and line L0L2 indicates 

the pollutant emissions limit. 

First, we consider that point A is the projection of point F in the x-y plane and on the line APAe, where 

the input x and the undesirable output b of A are constant, and, thus, the operational efficiency and 

operational effectiveness are measured through the adjustment of the desirable output y for point F. 

In a traditional output-oriented DEA model, the curve 0a1a2 represents the production frontier. The 

point on the curve 0a1a2 indicates the largest amount of electricity generation given the current 

consumption of input resources and emissions of pollutants, and, therefore, point Ae on curve 0a1a2 

can be considered as a reference point for point A. The distance between A and Ae along the dashed 

line AAe indicates the operational inefficiency, which also reflects the improvement potential of the 

operational efficiency of point F. 

When taking into account the influence of the electricity demand limit, we obtain a new, truncated 

production frontier represented by curve 0a1a3, which indicates that a power industry sector on 

curve 0a1a3 makes the best use of input resources and meets the electricity demand. In order to 

include the influence of electricity demand in the estimation so as to get more realistic evaluation 

results, the power industry sector A is first penalized to AP (since the electricity production of A is 

beyond the electricity demand D0D1 and the surplus electricity AEA is wasted), and, thus, AE on 

truncated frontier 0a1a3 will be the new reference point of AP, and the distance between AP and AE 

along the dashed line APAE indicates the operational ineffectiveness of power industry sector F. 

Second, we consider that point B is the projection of point F in the x-b plane and on the line BPBE, 

where the input x and the desirable output y of B are constant, and, thus, the environmental efficiency 

and environmental effectiveness are measured through the adjustment of the undesirable output b. 

In the environmental technology, the curve 0b1b2 indicates the environmental efficiency frontier, and 

the point on that curve indicates the best practice for pollutant emissions given the current levels of 

electricity generation and input resource consumption. Therefore, the point Be on curve 0b1b2 can be 

seen as the reference point for point B. The distance between B and Be along the dashed line BBe 

indicates the environmental inefficiency, which also reflects the reduction potential of pollutant 

emissions that the power industry sector F could achieve. 

Similarly, when we take the influence of the emissions limit into consideration, we get a new 

truncated environmental effectiveness frontier represented by curve 0b1b3, indicating that a power 

industry sector on this curve uses the best practice in pollutant emissions and strictly meets the 

emissions limit. Considering the influence of the emissions limit in the estimation, the power 

industry sector B is first penalized to BP (since the pollutant emissions of B exceed the emissions limit 

L0L1 and the extra emissions BEB should be reduced), and, thus, BE on truncated frontier 0b1b3 will be 

the new reference point for BP. Then, the distance between BP and BE along the dashed line BPBE can 

be defined as the environmental ineffectiveness of power industry sector F. 



 

Finally, we come to point C, which is the projection of point F in the y-b plane, where the input x is 

constant and the joint efficiency and joint effectiveness are measured through the adjustments of 

desirable output y and undesirable output b. Note that Ce is the reference point for point C on the joint 

efficiency frontier (represented by curve 0c1c2), which indicates the best practice in both electricity 

production and pollutant emissions. Thus, the distance between C and Ce along the dashed line CCe 

measures the joint inefficiency, which also reflects the potential improvement in electricity 

production and the potential abatement of pollutant emissions at point F. 

Then, we simultaneously consider the influence of the electricity demand and the emissions limit. In 

this case, we get a new truncated effectiveness frontier, 0c1CEL0. A power industry sector that is 

located on this frontier is considered to have the best practice in generating electricity with a high 

operational efficiency and in appropriately fulfilling the electricity demand as well as in emitting 

pollutants with a high environmental efficiency and appropriately meeting the emissions regulation. 

In other words, this jointly effective power industry sector not only makes the best use of input 

resources in electricity generation and the associated emissions reduction but also is successful in 

electricity market development to fulfill the electricity demand and in pollutant emissions control for 

meeting the environmental regulation. In this condition, when measuring the joint effectiveness of 

the power industry sector, point C is first penalized to CP (since the electricity production of C is 

beyond the electricity demand D0D2 and the pollutant emissions of C exceed the emissions limit L0L2) 

and, then, a new reference point CE on the joint production frontier 0c1CEL0 is utilized as a benchmark 

for the joint effectiveness measure of C. Consequently, the distance between CP and CE along the 

dashed line CPCE denotes the joint ineffectiveness of power industry sector F. 

 

3 Performance change measurements 

As time goes on, the emergence of new technology and changes in efficiency will lead to new 

paradigms of competition. Technology development, sales diversity, and efficiency improvement will 

shock an industry and push the power industry to enhance its core competence. In this section, we 

put forward three measurements based on the global Malmquist productivity index to identify the 

changes in the operational and environmental performances of China’s thermal power industry over 

the years. 

Fa re et al. (1992, 1994) describes the Malmquist productivity index at period t+1 relative to period t, 

quantifying productivity changes from period t to t+1, by defining the components change in 

efficiency and the change in technology. Pastor and Lovell (2005) extend the Malmquist productivity 

index to the global Malmquist productivity index, which does not have the infeasibility problem and 

is continuous and multipliable. 

Here, a decomposition of the global Malmquist productivity index is used to measure productivity 

evolution (i.e., change in effectiveness) and technology evolution (i.e., change in technology) (Lee and 



 

Johnson, 2014 and 2015; Wang et al., 2016a). By utilizing a global Malmquist productivity index, we 

first define a global Malmquist productivity index 𝑂𝑀𝑡
𝑡+1 to capture the operational productivity 

change from period t to t+1, as in Equation (14). 𝑂𝑀𝑡
𝑡+1 > 1, = 1, or < 1 indicates an operational 

productivity improvement, no change, or a reduction, respectively. 𝑂𝑀𝑡
𝑡+1 can be decomposed into 

the change in operational effectiveness (CIEo) and the change in operational technology (CITo), as 

shown in Equation (14). Similarly, CIEo > 1, = 1, or < 1 indicates an operational effectiveness 

improvement, no change, or a reduction, respectively, and CITo > 1, = 1, or < 1 indicates operational 

technology progress, no change, or a regression, respectively. 
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(14) 

𝐷𝐺
𝑜𝐸(𝑥𝑡 , 𝑦𝑡, 𝑏𝑡) and 𝐷𝐺

𝑜𝐸(𝑥𝑡+1, 𝑦𝑡+1, 𝑏𝑡+1) are the cross-period effectiveness scores of an observation 

in periods t and t+1 relative to the reference technology in all periods. 

Second, we define the global Malmquist productivity index 𝐸𝑀𝑡
𝑡+1 to capture the environmental 

productivity change from period t to t+1, as in Equation (15). 𝐸𝑀𝑡
𝑡+1 > 1, = 1, or < 1 indicates an 

environmental productivity improvement, no change, or a reduction, respectively. 𝐸𝑀𝑡
𝑡+1 can be 

decomposed into the change in environmental effectiveness (CIEe) and the change in environmental 

technology (CITe), as shown in Equation (14). Similarly, CIEe > 1, = 1, or < 1 indicates an 

environmental effectiveness improvement, no change, or a reduction, respectively, and CITe > 1, = 1, 

or < 1 indicates environmental technology progress, no change, or a regression, respectively. 
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(15) 

Third, we define the global Malmquist productivity index 𝑂𝐸𝑀𝑡
𝑡+1 to capture the joint productivity 

change from period t to t+1, as in Equation (16). 𝑂𝐸𝑀𝑡
𝑡+1 > 1, = 1, or < 1 indicates a joint 

productivity improvement, no change, or a reduction, respectively. 𝑂𝐸𝑀𝑡
𝑡+1 can be decomposed into 

the change in joint effectiveness (CIEoe) and the change in joint technology (CIToe), as shown in 

Equation (16). Similarly, CIEoe > 1, = 1, or < 1 indicates a joint effectiveness improvement, no change, 

or a reduction, respectively; CIToe > 1, = 1, or < 1 indicates a joint technology progress, no change, or a 

regression, respectively. 
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4 Empirical study of China’s thermal power industry 

In this section, we conduct an empirical case study to estimate the operational and environmental 

efficiency and effectiveness of China’s thermal power industry at the provincial level from 2006 to 

2013, which covers the 11th FYP period (2006-2010) and the first three years of the 12th FYP period 

(2011-2013). 

4.1 Data Set 

The data set is the provincial level annual data set that covers China’s 30 provinces from 2006 to 

2013, which covers the entire 11th FYP period and the first three years of the 12th FYP period (the 

latest two years’ data are temporarily unavailable). For convenience of expression and comparison, 

we refer to the “12th FYP period” instead of the “first three years of the 12th FYP period” to represent 

the period from 2011 to 2013. There are three inputs, two desirable outputs, and two undesirable 

outputs in this study. The three inputs are (i) the nameplate capacity of thermal power, measured in 

megawatts (MW), (ii) the annual amount of coal consumption, measured in tons of coal equivalent 

(tce), and (iii) the annual average amount of staff in the thermal power industry, measured in people. 

Since the electricity generated in some of China’s provinces cannot meet those provinces’ electricity 

demands, there exists a comparatively large amount of interprovincial electricity reallocation in 

China. We utilize two desirable outputs to identify such electricity reallocation: (i) the annual amount 

of electricity generated in each province, measured in megawatt-hours (MWh), is utilized for 

performance evaluation before reallocation, and (ii) the annual electricity supply of each province, 

also measured in MWh, is used for performance evaluation after reallocation. The two undesirable 

outputs are the annual amounts of CO2 and SO2 emissions, measured in tons. We use the retail sale of 

electricity, measured in MWh, in each province as the electricity demand limit, and the emissions 

reduction targets of CO2 and SO2 as the emissions limits, which are calculated based on China’s 

energy conservation and emissions reduction plans in the 11th and 12th FYP periods. Specifically, the 

SO2 emissions reduction target in the 11th FYP period is 29.50% (reducing from 13.50 million tons 

per year to 9.57 million tons per year), and the reduction target in the 12th FYP period is 16.32% 

(reducing from 9.56 million tons per year to 8.00 million tons per year). Neither a total emissions 

reduction target nor carbon intensity reduction targets are assigned to China's power industry during 

the 11th and 12th FYP periods. Thus, we use the reduction target of the coal consumption rate of 

electricity generation to calculate the CO2 emissions limit. In the 11th and 12th FYP periods, the coal 



 

consumption rate of electricity generation should reduce by 4.05% (from 370 gce/kWh to 355 

gce/kWh) and by 2.4% (from 333 gce/kWh to 325 gce/kWh), respectively. We let CELkt, Ckt, CRkt, Ekt, 

and TCRkt represent the CO2 emissions limit, CO2 emissions, the coal consumption rate of electricity 

generation, electricity generation, and the reduction target of the coal consumption rate of electricity 

generation, respectively, for the kth province in year t. Then, the CO2 emissions limit of the kth 

province in year t is calculated as in Equation (17): 

( / )kt kt kt kt ktCEL C CR E TCR=                                                                  

(17) 

In addition to the SO2 and CO2 emissions reduction targets, a dust emissions reduction target was 

also proposed in China’s energy conservation and emissions reduction plans for the 11th FYP period. 

Dust emissions were targeted to decrease by 55.6% (from 3.60 million tons per year to 1.60 million 

tons per year). In addition, in China’s energy conservation and emissions reduction plans for the 12th 

FYP period, a 28.9% reduction target for NOx emissions was proposed (from 10.55 million tons per 

year to 7.50 million tons per year). However, since the reduction targets for these two pollutant 

emissions cannot be compared between the 11th and 12th FYP periods, they are not analyzed in this 

study. 

4.2 Operational Performance 

Table 1 lists the operational performances of the thermal power industry sectors of China’s 30 

provinces during the 11th and 12th FYP periods. 

[Insert Table 1 here] 

 

During the 11th and 12th FYP periods, the annual gap between electricity generation and local 

electricity demand in Hebei decreased from 16.47 million MWh to 3.2 million MWh, indicating that 

compared to the 11th FYP period, Hebei generated more electricity to match its demand during the 

12th FYP period. The decrease in the gap between electricity generation and local electricity demand 

results in an improvement in operational effectiveness, and this improvement in operational 

effectiveness moved Hebei from Production Focus to Leader. Similar progress in operational 

effectiveness also occurred in Tianjin, which switched from Production Focus to Leader. 

Table 1 also shows that another seven provinces, e.g., Anhui, Henan, Guangxi, and Yunnan, shifted 

from Demand Focus to Leader, which indicates that these provinces made progress in simultaneously 

improving their operational efficiencies while maintaining their high operational efficiencies of 

electricity production. For instance, the operational effectiveness of Henan increased from 0.9979 in 

the 11th FYP period to 0.9983 in the 12th FYP period, and during the same period, its operational 

efficiency increased from 0.8731 to 0.9896. 

Since the beginning of the 12th FYP period, China has proposed a national integrated power industry 



 

development plan, which was not proposed or implemented before or during the 11th FYP period. 

According to this plan, the further distribution of China’s energy supply would be in the form of “five 

bases plus two belts,” indicating five energy bases and two energy belts. The five energy bases are 

Xinjiang, Shanxi, Southwest, Eastern Inner Mongolia, and Ordos Basin (including Shaanxi, Ningxia, 

and Gansu), and the two energy belts are the Eastern Nuclear belt and the South China Sea deep-sea 

oil and gas belt. As energy bases, these provinces were encouraged to increase their electricity 

generation to support electricity consumption in other provinces. Given this circumstance, it would 

be acceptable for these provinces located in energy bases to reduce their operational effectiveness 

scores in the 12th FYP period. From Table 1, it can be seen that the operational effectiveness scores of 

Shanxi, Inner Mongolia, Shaanxi, Ningxia, and Gansu all experienced slight decreases, which reveals 

that although the operational performances of these energy base provinces regressed, they are in line 

with the energy resource endowments of these provinces and are in accordance with China’s national 

integrated power industry development plan. 

Figure 5 additionally illustrates the strategic positions and their changes during the 11th and 12th FYP 

periods for China’s 30 provincial power industry sectors. The size of a bubble indicates the amount of 

electricity generation in the corresponding province. It can be seen that during the 11th FYP period, 

there were 11 provinces in the Leader quadrant, with Shandong, Shanxi, and Jiangsu in the leading 

positions, since they all have relatively higher operational efficiency and effectiveness scores and they 

generate comparatively more electricity than other provinces. Thus, these provinces were the major 

contributors to improving the operational performance of China’s thermal power industry during the 

11th FYP period. Similarly, it can be seen that there were 14 provinces in the Leader quadrant during 

the 12th FYP period, with Jiangsu, Guizhou, Zhejiang, and Henan as the major contributors for the 

same reason. 

[Insert Figure 5 here] 

 

In order to evaluate the effect of China’s interprovincial electricity transition and reallocation, we 

further estimate the operational performance of the thermal power industry sectors before and after 

the interregional electricity reallocation. Table 2 reports the average operational efficiency and 

operational effectiveness before and after the reallocation. 

[Insert Table 2 here] 

 

In the 11th and 12th FYP periods, China gradually executed the West-East electricity transmission 

project, under which large amounts of electricity generated in provinces in western China (e.g., 

Guizhou, Yunnan, Guangxi, Sichuan, Gansu, Inner Mongolia, and Shanxi), which are rich in fossil fuel 

resources, were transferred to provinces in eastern China (e.g., Guangdong, Shanghai, Jiangsu, 

Zhejiang, Beijing, and Tianjin), which had heavy demand for electricity consumption. China’s 



 

interprovincial electricity reallocation is in line with this policy. 

From Table 2, we find that Shanghai, Qinghai, and Guangdong shifted from PF (before reallocation) to 

L (after reallocation) due to their improvements in operational effectiveness, which were driven by 

decreases in the gaps between their electricity production and consumption. Before reallocation, the 

operational effectiveness scores of Shanghai, Qinghai, and Guangdong were 0.8800, 0.9314, and 

0.9225, respectively, whereas after reallocation, their scores increased to 0.9994, 0.9996, and 0.9994, 

respectively. Specifically, the electricity generated locally in Shanghai does not meet its electricity 

demand, and Shanghai annually consumes on average 10.2 million MWh of power that is generated in 

and transferred from other provinces, such as Jiangsu, Hubei, and Sichuan. Similarly, the electricity 

generated locally in Guangdong does not meet its electricity demand, and Guangdong annually 

consumes on average 21.6 million MWh of power that is generated in and transferred from other 

provinces, such as Guizhou, Yunnan, Hubei, and Hunan. On the contrary, Qinghai generated more 

electricity than its local demand and supported the electricity consumption of many other provinces. 

Qinghai is evaluated as Production Focus if the effect of this electricity reallocation is not taken into 

account (before reallocation), but it is categorized as a Leader when this effect is considered (after 

reallocation). Hence, taking the influence of electricity reallocation into account can help to provide a 

more reasonable and objective performance evaluation for provinces that have large amounts of 

electricity imports (e.g., Shanghai and Guangdong) or exports (e.g., Qinghai). In addition, the average 

operational effectiveness of the thermal power industry sectors of China’s 30 provinces increased 

from 0.9657 to 0.9994 after electricity reallocation, and no province experienced an effectiveness 

reduction after electricity reallocation. This result implies that China’s electricity reallocation is 

overall effective. 

Next, we come to the results of operational effectiveness changes denoted by the global Malmquist 

productivity index OM and its decompositions CIEo and CITo. In the 11th FYP period, the average OM, 

CIEo, and CITo of China’s 30 provincial thermal power industry sectors were 0.9982, 0.9981, and 

1.0001, respectively, whereas in the 12th FYP period, they were 1.0054, 1.0048, and 1.0006, 

respectively. This result shows that in the 12th FYP period, the operational performance of China’s 

thermal power industry improved more quickly than in the 11th FYP period, and this operational 

effectiveness increase is the major driving force for improving the operational performance during 

the 12th FYP period. As shown in Figure 6, in the 11th FYP period, the operational performance 

improvements of the thermal power industries in Chongqing, Beijing, and Guangxi were the highest, 

and in the 12th FYP period, those of Hebei, Liaoning, and Tianjin were the highest. 

[Insert Figure 6 here] 

 

4.3 Environmental performance  

Since two undesirable outputs from the thermal power industry, CO2 and SO2 , are included in the 



 

evaluation in this study, the environmental performance of the thermal power industry can be 

divided into two components: the CO2 emissions reduction performance and the SO2 emissions 

reduction performance. 

4.3.1 CO2 Emissions Reduction Performance 

Figure 7 shows the strategic positions of China’s 30 provincial thermal power industries with respect 

to their CO2 emissions reduction performances, in which the size of a bubble indicates the amount of 

CO2 emissions from the corresponding provincial thermal power industry sector. During the 11th FYP 

period, according to the reduction target of coal consumption rate of electricity generation assigned 

to each province, the average annual CO2 emissions limit was 3.67 billion tons, whereas the observed 

average annual amount of CO2 emissions was 3.19 billion tons. In addition, during the 12th FYP period, 

the average annual CO2 emissions limit was 4.74 billion tons, whereas the observed average annual 

amount of CO2 emissions was 3.75 billion tons. It is clear that the CO2 emissions reduction target for 

China’s thermal power industry is not very strict. This phenomenon can also be observed in Figure 7, 

in which the environmental efficiency and environmental effectiveness scores are positively related 

with a relatively high correlation. This finding indicates that most of China’s provincial thermal 

power industry sectors can match their CO2 emissions reduction efforts with their CO2 emissions 

reduction targets appropriately. However, this finding also indicates that the CO2 emissions reduction 

targets assigned to China’s thermal power industry are loose and conservative and that the central 

government may need to increase the burden of CO2 emissions control on this industry in the 13th 

FYP period. 

Figure 7 additionally illustrates that the environmental efficiency and environmental effectiveness of 

the power industries of Zhejiang and Jiangsu are comparatively higher and their CO2 emissions are 

greater than those of other provinces, whereas, on the contrary, these scores for the power industries 

of Inner Mongolia and Henan are comparatively lower, and their CO2 emissions are greater than those 

of other provinces. This result means that the power industry sectors of Zhejiang and Jiangsu are 

major contributors and the power industry sectors of Inner Mongolia and Henan are major 

obstructions to improving the CO2 environmental performance of China’s thermal power industry. 

[Insert Figure 7 here] 

 

In terms of the CO2 emissions reduction performance, during the 11th FYP period, the average EM, 

CIEe, and CITe of China’s 30 provincial thermal power industry sectors were 1.0256, 1.0168, and 

1.0115, respectively, and during the 12th FYP period, the average EM, CIEe, and CITe were 1.0322, 

1.0265, and 1.0060, respectively. This result indicates that environmental performance improved 

more in the 12th FYP period than in the 11th FYP period, and the improvement in environmental 

effectiveness is the major driving force for this improvement over our entire study period. However, 



 

the environmental technology of China’s thermal power industry improved less during the 12th FYP 

period than during the 11th FYP period. Figure 8 illustrates the average EM, CIEe, and CITe for each 

provincial thermal power industry. It can be seen that during the 11th FYP period, CO2 emissions 

reduction performances improved the most for the thermal power industries of Beijing, Chongqing, 

and Yunnan, and during the 12th FYP period, these performances improved the most in Inner 

Mongolia, Heilongjiang, and Henan. 

[Insert Figure 8 here] 

 

4.3.2 SO2 Emissions Reduction Performance 

A similar explanation can be derived for the SO2 emissions reduction performance. During the 11th 

FYP period, China’s thermal power industry had a national SO2 emissions reduction target of 9.571 

million tons, which was completed one year earlier, at the end of 2009. In addition, during the 12th 

FYP period, the annual SO2 emissions limit of China’s thermal power industry was 8.87 million tons, 

whereas the observed annual amount of SO2 emissions of China’s thermal power industry was just 

7.54 billion tons. This result shows that the SO2 emissions reduction targets assigned to China’s 

thermal power industry were also loose. Figure 9 shows that the environmental efficiency and 

effectiveness scores were highly and positively correlated, indicating that the SO2 emissions 

reduction efforts and the SO2 emissions reduction targets of most provincial thermal power industry 

sectors were appropriately matched, and thus the SO2 emissions reduction target assigned to China’s 

thermal power industry was conservative. Figure 9 further indicates that the thermal power industry 

sectors of Jiangsu and Guangdong were the major contributors to improving the SO2 environmental 

performance of China’s thermal power industry since they both had relatively higher environmental 

efficiency and effectiveness scores and comparatively greater amounts of SO2 emissions. For a similar 

reason, Chongqing and Shaanxi are considered the major obstructions to improving this 

environmental performance. 

[Insert Figure 9 here] 

 

With respective to the SO2 emissions reduction performance, the average EM, CIEe, and CITe of China’s 

30 provincial thermal power industry sectors were 1.0650, 0.9708, and 1.0935 during the 11th FYP 

period, and were 1.0816, 0.9800, and 1.1041 during the 12th FYP period, respectively. This result 

indicates that the improvement in environmental technology played a positive role in increasing the 

SO2 environmental performance, whereas the reduction in environmental effectiveness slowed this 

increase in China’s thermal power industry. Figure 10 additionally illustrates that the environmental 

performance improvements in the thermal power industries of Beijing, Shanghai, and Zhejiang were 



 

the most clear in the 11th FYP period, and the improvements of Shanxi, Shaanxi, and Ningxia were the 

most significant in the 12th FYP period. 

[Insert Figure 10 here] 

 

4.3 Joint Performance 

The joint performance is considered a combination of both the operational and the environmental 

performance and provides a comprehensive performance evaluation of the thermal power industry 

by taking into account the efforts both toward achieving specific marketing goals and toward 

matching appropriate emissions reduction targets. 

Figure 11 illustrates the geographic distribution of the joint performances. First, it can be seen that 

the thermal power industries of Yunnan and Hebei shifted from Environment Focus (in the 11th FYP 

period) to Leader (in the 12th FYP period), indicating that these provinces made good progress in 

improving their joint efficiency by increasing their technical efficiency both in energy consumption 

for electricity generation and in related CO2 and SO2 emissions control. Second, Guizhou and Shanxi 

shifted from Production Focus to Laggard during the same period, indicating that the joint 

effectiveness of the thermal power industries in these provinces decreased. However, this decrease is 

reasonable since according to China’s West-East electricity transmission project, provinces in 

western China, such as Guizhou and Shanxi, were encouraged to enhance their electricity generation 

capacities so as to increase their electricity generation and exports to provinces in eastern China, 

such as Guangdong and Zhejiang, to meet their electricity demands. In addition, during the 11th FYP 

period, 17.71% of the electricity produced by Gansu was exported and consumed by other provinces, 

but this percentage increased to 31.05% during the 12th FYP. The increase in the gap between 

electricity generation and local electricity demand resulted in a decrease in the joint effectiveness of 

Gansu’s thermal power industry and drove Gansu’s transition from Leader to Laggard. However, this 

transition is acceptable since it is in line with China’s national integrated power industry 

development plan, in which Gansu is constructed as one of the energy bases in China and is expected 

to increase its electricity generation to support the electricity consumption of northern China regions 

like Hebei, Shandong, Beijing, and Tianjin. The above findings reveal that, in general, China’s 

interprovincial electricity reallocation during the 12th FYP period is in line with its national energy 



 

planning policy. 

[Insert Figure 11 here] 

 

Figure 12 illustrates the joint productivity change and its components, joint effectiveness change and 

joint technology change, for China’s 30 provincial thermal power industry sectors during the study 

period. The horizontal and vertical axes indicate the average CIEoe and CIToe, respectively, and the size 

of the bubble indicates the OEM. It can be seen that most of the bubbles representing the 11th FYP 

period are concentrated in the lower right of the figure, whereas most of the bubbles representing the 

12th FYP period are symmetrically located in the upper half of the figure. This implies that during the 

11th FYP period, the increase in joint effectiveness was the major driving force for improving the joint 

productivity of China’s thermal power industry, whereas during the 12th FYP period, increases in both 

joint effectiveness and joint technology equally contributed to the improvement of the joint 

productivity. 

[Insert Figure 12 here] 

 

5 Conclusion 

As a complement to the operational efficiency measure, the operational effectiveness measure helps 

to identify the capacity of an electricity production system to adjust its electricity generation 

activities to match the electricity demand. In addition, as a complement to environmental efficiency 

measure, the environmental effectiveness measure helps to identify the capacity of an electricity 

production system to adjust its emissions abatement activities to fulfill environmental regulations. 

Furthermore, the environmental effectiveness measure helps the government regulator to verify the 

rationality of its emissions reduction targets assigned to the thermal power industry. 

Several newly developed DEA-based effectiveness measurements were utilized in this study to 

evaluate the operational and environmental performance of the thermal power industry in China’s 30 

provincial regions during 2006-2013. Both efficiency and effectiveness were evaluated from the three 

perspectives of operational, environmental, and joint adjustments to each regional electricity 

production system. The operational and environmental performance changes over time were also 

captured in this study through an effectiveness measure based on the global Malmquist productivity 

index. 

The estimation results of the empirical study draw several conclusions. (i) Effectiveness measures are 



 

different from efficiency measures, and a strong performance in electricity generation guarantees a 

strong performance neither in matching electricity generation to electricity demand nor in fulfilling 

emissions control targets. (ii) According the estimates of operational productivity change, 

environmental productivity change, and joint productivity change during the study period, China’s 

thermal power industry experienced significant progress during the 12th FYP period. (iii) In general, 

the CO2 and SO2 emissions reduction targets assigned to China’s thermal power industry are loose. (iv) 

Specifically, Shandong, Shanxi, and Jiangsu were the major contributors to improving the operational 

performance of China’s thermal power industry during the 11th FYP period, whereas Jiangsu, Guizhou, 

and Zhejiang were the major contributors to improving the operational performance during the 12th 

FYP period. (v) The power industry sectors of Zhejiang and Jiangsu were the major contributors to 

improving the CO2 environmental performance, and those of Jiangsu and Guangdong were the major 

contributors to improving the SO2 environmental performance of China’s thermal power industry. (vi) 

The construction of “five energy bases” proposed in China’s national integrated power industry 

development plan gradually yielded the expected positive effect, and the West-East electricity 

transmission project for interprovincial electricity reallocation was overall effective in China. 
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Tables and Figures 

 

Table 1 Operational performance 

Province/ 
Abbreviation 

11th FYP period 12th FYP period 

Efficiency Effectiveness 
SP 

Efficiency Effectiveness 
SP 

Score Rank Score Rank Score Rank Score Rank 

Beijing/ BJ 0.9630 14 0.4904 30 PF 1.0000 1 0.5000 30 PF 

Tianjin/ TJ 0.9815 10 0.9153 26 PF 0.9447 15 0.9992 1 L 

Hebei/ HB 0.9409 17 0.8777 28 PF 0.9232 19 0.9898 25 L 

Shanxi/ SX 0.9656 13 0.9952 20 L 0.8018 27 0.9949 22 DF 

Inner Mongolia/ IM 0.8681 26 0.9952 19 DF 0.7612 28 0.9937 23 DF 

Liaoning/ LN 0.9021 19 0.9806 23 DF 0.6301 30 0.9927 24 DF 

Jilin/ JL 0.7089 30 0.9974 13 DF 0.7531 29 0.9964 15 DF 

Heilongjiang/ HLJ 0.8161 28 0.9968 15 DF 1.0000 1 0.9969 13 L 

Shanghai/ SH 1.0000 1 0.8750 29 PF 1.0000 1 0.8885 29 PF 

Jiangsu/ JS 1.0000 1 0.9987 2 L 1.0000 1 0.9986 5 L 

Zhejiang/ ZJ 0.9962 8 0.9993 1 L 0.9927 13 0.9991 2 L 

Anhui/ AH 0.9020 20 0.9963 18 DF 1.0000 1 0.9954 20 L 

Fujian/ FJ 0.9994 7 0.9977 11 L 0.8453 25 0.9976 8 DF 

Jiangxi/ JX 0.7926 29 0.9982 5 DF 0.8693 23 0.9987 4 DF 

Shandong/ SD 0.9757 11 0.9973 14 L 0.8880 21 0.9990 3 DF 

Henan/ HN 0.8731 25 0.9979 8 DF 0.9896 14 0.9983 6 L 

Hubei/ HuB 1.0000 1 0.9949 21 L 0.9374 17 0.9951 21 L 

Hunan/ HuN 0.8652 27 0.9980 6 DF 1.0000 1 0.9971 10 L 

Guangdong/ GD 1.0000 1 0.9108 27 PF 0.9059 20 0.9422 27 Lag 

Guangxi/ GX 0.8918 21 0.9887 22 DF 1.0000 1 0.9979 7 L 

Hainan/ HaN 1.0000 1 0.9978 10 L 0.9435 16 0.9971 11 L 

Chongqing/ CQ 0.8839 23 0.9526 24 Lag 1.0000 1 0.9706 26 PF 

Sichuan/ SC 0.9589 15 0.9978 9 L 0.8734 22 0.9964 16 DF 

Guizhou/ GZ 0.9755 12 0.9979 7 L 1.0000 1 0.9974 9 L 

Yunnan/ YN 0.8813 24 0.9982 4 DF 0.9366 18 0.9971 12 L 

Shaanxi/ SaX 0.9040 18 0.9967 16 DF 0.8564 24 0.9957 18 DF 

Gansu/ GS 0.9537 16 0.9982 3 L 1.0000 1 0.9969 14 L 

Qinghai/ QH 1.0000 1 0.9448 25 PF 0.9960 12 0.9091 28 PF 

Ningxia/ NX 0.9866 9 0.9976 12 L 0.8429 26 0.9959 17 DF 

Xinjiang/ XJ 0.8916 22 0.9963 17 DF 1.0000 1 0.9955 19 L 



 

  



 

 

Table 2 Operational performance before reallocation (BR) and after reallocation (AR) 

Province 
Efficiency Effectiveness BR Effectiveness AR SP SP 

Score Rank Score Rank Score Rank BR AR 

Beijing 0.9769  11 0.4940  30 0.9993  21 PF PF 

Tianjin 0.9885  10 0.9468  25 0.9994  17 L PF 

Hebei 0.9423  14 0.9197  28 0.9995  6 L L 

Shanxi 0.9497  13 0.9951  19 0.9993  22 L PF 

Inner Mongolia 0.8432  27 0.9947  21 0.9995  3 DF DF 

Liaoning 0.8492  26 0.9851  23 0.9994  16 DF DF 

Jilin 0.6794  30 0.9970  13 0.9994  18 DF Lag 

Heilongjiang 0.7925  29 0.9969  15 0.9993  24 DF Lag 

Shanghai 1.0000  1 0.8801  29 0.9994  12 PF L 

Jiangsu 1.0000  1 0.9987  2 0.9992  25 L PF 

Zhejiang 0.9976  7 0.9992  1 0.9995  4 L L 

Anhui 0.9360  16 0.9960  18 0.9993  23 L PF 

Fujian 0.9996  6 0.9976  10 0.9995  9 L L 

Jiangxi 0.8124  28 0.9984  3 0.9994  11 DF DF 

Shandong 0.9358  17 0.9979  5 0.9994  14 L L 

Henan 0.8787  24 0.9981  4 0.9995  8 DF DF 

Hubei 0.9961  8 0.9950  20 0.9994  20 L PF 

Hunan 0.8923  23 0.9977  9 0.9991  29 DF Lag 

Guangdong 1.0000  1 0.9226  27 0.9994  13 PF L 

Guangxi 0.8971  22 0.9921  22 0.9994  15 DF DF 

Hainan 1.0000  1 0.9975  11 0.9992  28 L PF 

Chongqing 0.9062  21 0.9594  24 0.9992  27 Lag Lag 

Sichuan 0.9743  12 0.9973  12 0.9990  30 L PF 

Guizhou 0.9372  15 0.9977  8 0.9995  5 L L 

Yunnan 0.9258  18 0.9978  6 0.9995  10 DF DF 

Shaanxi 0.9162  20 0.9963  16 0.9994  19 DF Lag 

Gansu 0.9172  19 0.9977  7 0.9995  7 DF DF 

Qinghai 1.0000  1 0.9314  26 0.9996  1 PF L 

Ningxia 0.9902  9 0.9970  14 0.9996  2 L L 

Xinjiang 0.8734  25 0.9960  17 0.9992  26 DF Lag 

  



 

 

Figure 1 Strategic positions from perspective of operational performance improvement 

 

 

 

Figure 2 Strategic positions from perspective of environmental performance improvement 

 

 

 

Figure 3 Strategic positions from perspective of joint performance improvement 



 

 

 

 

Figure 4 Operational, environmental and joint performance measurements 

 

 



 

 

Figure 5 Strategic positions in terms of operational performance 

 

 

 

Figure 6 Productivity change in terms of operational performance 

 

 



 

 

Figure 7 Strategic positions in terms of CO2 emissions reduction performance 

 

 



 

 

Figure 8 Productivity change in terms of CO2 emissions reduction performance 

 

 



 

 

Figure 9 Strategic positions in terms of SO2 emissions reduction performance 

 

 



 

 

Figure 10 Productivity change in terms of SO2 emissions reduction performance 

 

 

 

Figure 11 Strategic positions in terms of joint performance 

 

 



 

 

Figure 12 Productivity change in terms of joint performance 

 

 


