一种基于恒星分布的星敏感器导航星库制作方法

叶志龙^{1,2},孙朔冬^{1,2},陈纾^{1,2},吴迪^{1,2},武斌^{1,2}

(1. 上海航天控制技术研究所,上海 201109; 2. 上海市空间智能控制技术重点实验室,上海 201109)

摘 要:为了进一步提升星敏感器的定姿精度,分析了恒星的空间几何分布对姿态精度的影响,提出了一种基于恒星 分布的星敏感器导航星库制作方法。在分析对比了现有星库的基础上,选择了精度较高的依巴谷星库作为基础星库,并剔 除了暗星和双星以精简星库。遍历全天球对每个视场的星库中的空间几何分布进行分析对比,删除定姿较差的3颗星。对星 库进行遍历补偿,保证了星库中恒星分布的均匀性。实验结果表明,全天球轨道测试中,本文方法制作星库的全天识别率 为100%,且星颗分布数10颗以上天区占到97.64%,具有良好的覆盖性,同时有效提升了姿态精度。

关键词:导航星库;恒星分布;姿态精度;星敏感器

中图分类号: V488.21 文献标识码: A 文章编号: 2095-7777(2018)01-0090-07 **DOI:**10.15982/j.issn.2095-7777.2018.01.013

引用格式:叶志龙,孙朔冬,陈纾,等.一种基于恒星分布的星敏感器导航星库制作方法[J].深空探测学报,2018,5(1):90-96.

Reference format: YE Z L, SUN S D, CHEN S, et al. Establishment of a navigation star database based on star distribution[J]. Journal of Deep Space Exploration, 2018, 5 (1) : 90-96.

0 引 言

星敏感器作为一种高精度的姿态测量器件, 已广 泛应用于卫星, 深空探测等航天飞行器中, 其通过匹 配探测恒星信息与导航星库中的恒星信息,并采用 OUEST (Ouaternion Estimator) 算法解算姿态。导航 星库是星敏感器进行星图识别和跟踪的关键信息,其 合理性和完备性对星敏感器工作的鲁棒性和精度都有 着重要的影响。现有的导航星库制作方法主要有星等 阈值法、星等加权法、正交网格法、回归选取法、二 维精简索引分层构造法等[1-4]。星等阈值法是通过选取 星等小于一定阈值的星构成导航星库,该方法虽然简 单,也具有良好的匹配性,但是恒星分布的不均匀性 会导致星图识别准确性下降。若采用提高星等阈值来 改善此问题,则会导致星库容量增大,不利于星敏感 器存储使用,也增加星库搜索的时间。星等加权法通 过对星等较低的星赋予较大权值来提高导航星库恒星 较少天区的星颗数,但依旧存在与星等阈值法类似的 问题。正交网格法则是通过映射法将候选导航星映射 从球面到平面上,并利用互不重叠的等面积正交网格 将其划分,选取每个网格中最亮的星作为导航星。此 方法可通过调节网格大小筛选导航,有较强的灵活 性。但是未考虑到星敏感器的实际探测能力,导致一

收稿日期: 2017-05-11 修回日期: 2017-06-20

些网格中的导航星不可用。回归选取法则是将星等 阈值法中的固定阈值变为动态阈值,可有效地筛选出 导航星,但动态阈值的自适应性仍不够完善。二维 精简索引分层构造法把导航星分为局部亮星和暗星。 以局部亮星构造导航三角形,节约了导航星库空间, 大大缩短了搜索时间,然而该方法对星敏感器的视场 有一定的要求,仅适用于探测星等较低的第二代星敏 感器。

由此可见,现有的导航星库多以星等和分布均匀 性为依据选取导航星,此类方法虽然可以较为完备地 筛选出导航星库,但未考虑星库中恒星的空间分布对于 定姿的影响,往往会出现星敏感器视场划过某一天区 的时候,其输出姿态的误差有一定幅度增大^[5-8]。因 此,本文考虑利用恒星的空间分布与定姿精度的关系, 并结合星等和恒星分布的均匀性来选取制作导航星库。

1 星库的选择

星库记录了恒星位置、星等、光谱等天文参数。 由于编制星库使用仪器、观测条件和处理方法不一 样,不同星库中恒星的颗数不一样,恒星的位置精度 也会有差异。星库是设计制作导航星库的基础,也是 决定星敏感器定姿精度的关键因素之一。表1给出了 天文领域实际使用的几种星库。

		Table 1 Severa	l common star datebase					
星库名称	星库历元	总星数	星库精度/(")	分布密度(star/sep.deg)				
FK5	J2000.0	1 535	0.02	0.037				
FK4 Exl	J2000.0	3 117	0.04	0.075				
FK6	J2000.0	4 150	0.000 4	0.100				
SAO	J2000.0	258 997	1.0	6.267				
PPM (North)	J2000.0	181 731	0.27	4.398				
PPM (South)	J2000.0	197 179	0.11	4.771				
GSC 2.2	J2000.0	455 851 237	0.3	11 031.060				
Hipparcos	J2000.0	118 218	0.000 8	2.861				
Tycho1	J2000.0	1 058 332	0.007	25.610				
TRC	J2000.0	990 182	0.040	23.961				
Tycho2	J2000.0	2 539 913	0.007	61.463				

表1中SAO星库和Hipparcos星库较容易获得,其 中Hipparcos星库的精度较高,可达到0.000 8",因此, 本文选择Hipparcos星库为基础星库。从表1中可以看 出,Hipparcos星库中恒星的数目近12万颗,数目过于 庞大,且星敏感器光学系统的敏感能力有限。因此, 可根据星敏感器的敏感极限来删减星库。另一方面, 星库中存在的双星和变星,对姿态解算有一定影响, 可删除双星和变星进一步精简星库。

2 基于姿态精度的选星策略

星敏感器的定姿误差来源主要有星点质心定位误差,光学系统误差以及定姿算法的转换误差等。为便于分析,将星点定位误差和光学系统误差认为是天文观测误差。星敏感器通过获取星点在星敏感器测量坐标系的坐标,以及星点对应于惯性坐标的坐标,通过Quest算法解算得到姿态信息。

2.1 恒星空间几何分布对定姿精度的影响

假设恒星在测量坐标系b下的三维坐标为 $w_k = \begin{bmatrix} x_{bk} & y_{bk} & z_{bk} \end{bmatrix}^T$, k = 1, 2, 3 ... n, 在惯性坐标系i下的三维坐标为 $v_k = \begin{bmatrix} x_{ik} & y_{ik} & z_{ik} \end{bmatrix}^T$, k = 1, 2, 3 ... n, 则 $v_k = A_b^i w_k$ (1)

其中: A_b^i 为观测坐标系b到惯性坐标系i的姿态转移矩阵。若记 $W = \begin{bmatrix} w_1^T w_2^T \cdots w_n^T \end{bmatrix}^T$, $V = \begin{bmatrix} v_1^T & v_2^T \cdots v_n^T \end{bmatrix}^T$, 依据上式可知

$$W = VA_{h}^{i} \tag{2}$$

星敏感器在观测星数不小于3时,可用最小二乘法 求解姿态转移矩阵,即

$$A_{b}^{i} = \left(V^{\mathrm{T}}V\right)^{-1}V^{\mathrm{T}}W = QW$$
(3)

$$\exists : Q = \left(V^{\mathrm{T}}V\right)^{-1}V^{\mathrm{T}}.$$

由于存在天文观测误差,恒星的实际观测矢量为 $\tilde{W} = W + \Delta W$,其中 ΔW 为天文观测误差。则

$$\widetilde{A_{b}^{i}} = Q\widetilde{W} = QW + Q\Delta W = A_{b}^{i} + \Delta A_{b}^{i}$$

$$\tag{4}$$

若以观测坐标系b为参考,记定姿误差矢量为 $\delta \varphi = \begin{bmatrix} \delta \varphi_1 & \delta \varphi_2 & \delta \varphi_3 \end{bmatrix}^T$,当定姿误差角为一小量时, $\widetilde{A_b^i}$ 可表示为

$$\widetilde{A_b^i} = A_{b'}^i = A_b^i A_{b'}^b \tag{5}$$

式中: $M = \begin{bmatrix} 0 & \delta\varphi_3 & -\delta\varphi_2 \\ -\delta\varphi_3 & 0 & \delta\varphi_1 \\ \delta\varphi_2 & -\delta\varphi_1 & 0 \end{bmatrix} = A_i^b \Delta A_b^i$, 记M的 协方差矩阵为 P_M , 误差矩阵 ΔA_b^i 的协方差矩阵为 P_Δ , 定姿误差矢量 $\delta\varphi$ 的协方差矩阵为 P_{φ} 。

$$\boldsymbol{P}_{\boldsymbol{M}} = \boldsymbol{M}\boldsymbol{M}^{\mathrm{T}} = \left(\boldsymbol{A}_{i}^{b}\Delta\boldsymbol{A}_{b}^{i}\right)\left(\boldsymbol{A}_{i}^{b}\Delta\boldsymbol{A}_{b}^{i}\right)^{\mathrm{T}} = \boldsymbol{A}_{i}^{b}\boldsymbol{P}_{\Delta}\boldsymbol{A}_{b}^{i}$$

$$= \begin{bmatrix} (\delta\varphi_{2})^{2} + (\delta\varphi_{3})^{2} & -\delta\varphi_{1}\delta\varphi_{2} & -\delta\varphi_{1}\delta\varphi_{3} \\ -\delta\varphi_{1}\delta\varphi_{2} & (\delta\varphi_{1})^{2} + (\delta\varphi_{3})^{2} & -\delta\varphi_{2}\delta\varphi_{3} \\ -\delta\varphi_{1}\delta\varphi_{3} & -\delta\varphi_{2}\delta\varphi_{3} & (\delta\varphi_{1})^{2} + (\delta\varphi_{2})^{2} \end{bmatrix}$$
(7)

$$\boldsymbol{P}_{\varphi} = \delta\varphi(\delta\varphi)^{\mathrm{T}} = \begin{bmatrix} (\delta\varphi_{1})^{2} & \delta\varphi_{1}\delta\varphi_{2} & \delta\varphi_{1}\delta\varphi_{3} \\ \delta\varphi_{1}\delta\varphi_{2} & (\delta\varphi_{2})^{2} & \delta\varphi_{2}\delta\varphi_{3} \\ \delta\varphi_{1}\delta\varphi_{3} & \delta\varphi_{2}\delta\varphi_{3} & (\delta\varphi_{3})^{2} \end{bmatrix}$$
(8)

由式 (7) 和式 (8) 可知

$$\operatorname{tr} \boldsymbol{P}_{\varphi} = (\delta\varphi_1)^2 + (\delta\varphi_2)^2 + (\delta\varphi_3)^2 = \operatorname{tr} \boldsymbol{P}_{\boldsymbol{M}} = \frac{1}{2} \operatorname{tr} \left(\boldsymbol{A}_i^b \boldsymbol{P}_{\Delta} \boldsymbol{A}_b^i \right) = \frac{1}{2} \operatorname{tr} \left(\boldsymbol{P}_{\Delta} \boldsymbol{A}_b^i \boldsymbol{A}_b^i \right) = \frac{1}{2} \operatorname{tr} \left(\boldsymbol{P}_{\Delta} \right)$$
(9)

天文观测误差 ΔW 主要取决于敏感器件及星点提取 等误差,与选星无关。因此,假设 ΔW 一定,其方差为 σ_{w}^{2} 。由式(3)、式(4)和式(9)可得

$$\boldsymbol{P}_{\Delta} = \mathbf{E} \left(\Delta \boldsymbol{A}_{b}^{i} \left(\Delta \boldsymbol{A}_{b}^{i} \right)^{\mathrm{T}} \right) = \mathbf{E} \left(\boldsymbol{Q} \Delta \boldsymbol{W} (\boldsymbol{Q} \Delta \boldsymbol{W})^{\mathrm{T}} \right)$$

$$= \boldsymbol{Q} \mathbf{E} \left(\Delta \boldsymbol{W} (\Delta \boldsymbol{W})^{\mathrm{T}} \right) \boldsymbol{Q}^{\mathrm{T}} = \boldsymbol{Q} \boldsymbol{Q}^{\mathrm{T}} \boldsymbol{\sigma}_{W}^{2} = \left(\boldsymbol{V}^{\mathrm{T}} \boldsymbol{V} \right)^{-1} \boldsymbol{\sigma}_{W}^{2}$$
(10)

由式 (9) 和式 (10) 可知

$$\operatorname{tr} \boldsymbol{P}_{\varphi} = \frac{1}{2} \operatorname{tr} \left(\boldsymbol{P}_{\Delta} \right) = \frac{\operatorname{tr} \left(\left(\boldsymbol{V}^{\mathrm{T}} \boldsymbol{V} \right)^{-1} \right)}{2} \sigma_{W}^{2} = \frac{\operatorname{tr} \left(\left(\boldsymbol{V}^{\mathrm{T}} \boldsymbol{V} \right)^{*} \right)}{2 \operatorname{det} \left(\boldsymbol{V}^{\mathrm{T}} \boldsymbol{V} \right)} \sigma_{W}^{2}$$
(11)

以Quest算法的三星定姿为例,其中 $V = \begin{bmatrix} w_1^T & v_2^T \cdots \\ v_n^T \end{bmatrix}^T$, v_1 , v_2 , v_3 为3颗定姿星的惯性坐标系下的单位矢量,矩阵V一定程度上反映了恒星的空间几何分布^[9-10]。 假设惯性坐标i的原点为O,3颗星对应的单位矢量为 Ov_1 , Ov_2 , Ov_3 。3颗恒星与原点构成的四面体体积 T_{vol} 为

$$T_{vol} = \frac{1}{6} (v_1 \times v_2) \cdot v_3 = \frac{1}{6} \det(V)$$
(12)

将上式代入式(10),式(9),令 $B = (V^T V)^*$ 则

$$(\delta\varphi_1)^2 + (\delta\varphi_2)^2 + (\delta\varphi_3)^2 = \frac{\operatorname{tr}(\boldsymbol{B})}{72T_{vol}^2} \sigma_W^2 \operatorname{tr} \boldsymbol{P}_{\varphi}$$

$$= \frac{\operatorname{tr}((\boldsymbol{V}^T \boldsymbol{V})^*)}{2\operatorname{det}(\boldsymbol{V}^T \boldsymbol{V})} \sigma_W^2 = \frac{\operatorname{tr}(\boldsymbol{B})}{72T_{vol}^2} \sigma_W^2$$
(13)

由式(13)可知,定姿误差的方差与星矢量构成 的体积以及矩阵**B**的迹相关。为了说明星矢量构成体积 和**B**的迹对定姿精度的影响量级,以(120°,30°)天区 为例,在天区探测到的恒星共有30颗,共有4060种定姿 组合,其中 $\frac{\max(T_{vol}^2)}{\min(T_{vol}^2)}$ =1.95×10⁷, $\frac{\max(tr(B))}{\min(tr(B))}$ =34.57, 由此可见,恒星的空间几何分布是决定定姿误差的主 要因素。因此,可考虑恒星的空间几何分布因素作为 导航星库洗取策略,以提升星敏感器的定姿精度。

2.2 基于恒星分布的导航星库制作方法和步骤

综上所述,本文选取Hipparcos星库作为基础星库 来筛选导航星库。

第1步: 星库精简,根据星敏感器的敏感极限星等 精简星库,删除原始星库中星等大于6.2的恒星,同时 删除双星,光学头部的视场为14.5°×14.5°,探测器尺 寸为2048×2048,若星点成像为3×3的高斯分布,则 能分辨两颗恒星的最小间距为6个像素,且星跟踪模式 下的星跟踪半径最大设为30,则剔除星对角矩小于 14.5° 2048×30≈0.212°,即删星对角矩小于0.212°的双星。 图 1为精简前后的星库三维图示。精简后的星库共有 4975颗星。

第2步:随机生成光轴指向,并搜索当前光轴指向 所在天区视场内的星,任取3颗星计算其星矢量组成的 四面体的体积,分别计算每种组合中恒星矢量组成四 面体体积。

第3步:基于恒星几何分布选取导航星。由2.1所 述可知,用于定姿的恒星矢量空间构成体积越大,定 姿误差越小,定姿精度越高。以(120°,30°)天区为 例,在基础星库中该天区共有30颗星,任取3颗导航 星,则有4060种组合。图3给出了姿态误差与四面体 体积的变化趋势图,从图中可以看出,四面体体积越 大,姿态角的误差越小,即姿态角度的精度越高。图4 给出了精简后的星库在(120°,30°)天区的星点分布 图,图中红色的3颗星为空间几何分布体积最小的3颗星, 可以看出这3星在平面坐标上基本处于一条直线上,其 星矢量形成的空间四面体的体积最小,解算出的姿态 数据误差也是最大的,可先删除定姿误差较大的3颗星。

第4步: 在减少恒星分布对定姿误差影响后,再次 遍历全天球,每个视场保留最亮的15颗,以进一步精 简星库,精简之后星库共有导航星4065颗。

图 3 精简星库恒星分布图 Fig. 3 The distribution map of simplified star datebase

图 4 视场划分图 Fig. 4 Split graph of FOV

第5步:为了保证导航星库在视场中的星分布尽可 能均匀,本文将内切圆视场划分成4个面积相等的扇形 区域,如图 4所示。遍历每个视场,统计每个扇形区 域的星颗数,若出现有星颗数为0的扇形区,则将基础 星库在该扇形区最亮的星添加到导航星库中。仿真结 果表明,共有2 260个天区出现星颗数为0的区域,共 添加126颗星,即星库星颗数共为4 191颗。图 5~7给 出了扇区为0区域加添星的过程。图 8为星库的全天球 分布图。

3 试验验证情况

为了验证星库的有效性和完备性,对制作的导航 星库进行全天球识别验证,输入15组动力学参数进行 全天识别测试全天球的覆盖性,即赤经0°到360°,赤 纬分别为–90°到90°的轨道。识别情况如表 2所示。为 了进一步评价星库的完备性,随机生成1万个光轴指向,统计每个视场内的星颗数情况,如表3所示。

图 8 导航星库的二维分布图 Fig. 8 2-D distribution map of navigation star table

从表 2和表 3可以看出,在测试的全天球轨道中,本文方法制作的星库可以较好地满足全天球捕获的要求,且颗数大于10颗的天区占到97.64%,覆盖性较好。

为了进一步验证本文方法制作的星库对提升姿态 精度的有效性,在全天球随机生成了10万个光轴指向, 计算得到理想姿态与实际姿态的误差,如图 9所示。

从图中可以看出,利用本文方法制作的星库,删除了定姿误差较大的恒星,提升了星敏的定姿精度,极大地减小了*X、Y、Z*3个方向的理想姿态与实际误差。与经典的导航星库制作方法相比,利用本文方法制作的导航星库计算出的姿态精度更高,姿态输出也更为稳定,且不会出现如图2所示姿态误差变化较大的情况。

Table 2 T	he Reco	gnitio	n of all-	-sky by navi	gation s	tar da	tebase
轨道参数 /(°)	最少识 别星数	是否 识别	覆盖 率/%	轨道参数 /(°)	最少识 别星数	是否 识别	覆盖 率/%
赤纬0	7	是	100	赤纬10	8	是	100
赤纬10	7	是	100	赤纬20	8	是	100
赤纬20	6	是	100	赤纬30	9	是	100
赤纬30	7	是	100	赤纬40	9	是	100
赤纬40	4	是	100	赤纬50	6	是	100
赤纬50	8	是	100	赤纬60	9	是	100
赤纬60	8	是	100	赤纬70	8	是	100
赤纬70	9	是	100	赤纬80	11	是	100
赤纬80	14	是	100			是	100

筛选后星库的全天识别情况

表 2

表 3 星库中星数的分布情况

Table 3 The distribution of star number in star datebase

星数情况/颗	天区数	百分比/%
小于5	2	0.02
5~10	234	2.34
10~15	2 324	23.24
15~20	4 764	47.64
大于20	2 676	26.76

4 结 论

本文分析了恒星分布对定姿精度的影响,进而提 出了一种基于恒星几何分布的星敏感器导航星库的制 作方法。首先根据星敏感器的敏感极限以及跟踪半径 的大小精简星库,计算每个视场内不同恒星分布组合

图 9 理想姿态与实际姿态的误差

Fig. 9 Error between ideal attitude and actual attitude

的定姿误差,删除误差较大的星以进一步精简星库。 同时对于视场内恒星分布的均匀性进行了优化,添加 了星颗数为0的扇区,使得导航星库进一步完善,经全 天球识别测试和天区星数统计结果表明,本文方法制 作的星库完备性和均匀性较好,同时能够有效提升星 敏感器的定姿精度。

参考文献

 朱长征,居永忠,杜晓辉. 导航星库制定方法研究[J]. 宇航学报, 2010,31(5):1327-1330.
 ZHU C Z, JU Y Z, DU X H. Approach to founding a guide star catalogue[J]. Journal of Astronautics, 2010, 31(5):1327-1330.
 郑万波,刘智,郝志航. 二维精简索引分层导航星库的构造[J]. 吉林 大学学报(信息科学版), 2003, 21(2):123-127.

ZHENG W B, LIU Z, HAO Z H. Construction of delaminating guide star database with 2-D condensed index[J]. Journal of Changchun Post and Telecommunication Institute, 2003, 21(2): 123-127.

- [3] 许士文,李葆华,张迎春,等.用字符匹配进行星图识别的导航星库 存储方法[J].哈尔滨工业大学学报[J].2005,37(6):819-821.
 XU S W,LI B H, ZHANG Y C, et al. A store navigation star database method for star map recognition using character match[J]. Journal of Harbin Institute of Technology, 2005, 37(6):819-821.
- [4] 蔡志武,韩春好,陈金平.一种高精度星载导航星库的构建方法[J].
 测绘科学技术学报,2006,23(1):29-32.

CAI Z W, HAN C H, CHEN J P. A approach of construction high precision guide star catalogue on board[J]. Journal of Zhengzhou Institute of Surveying and Mapping, 2006, 23(1): 29-32.

[5] ZHANG H, SANG H. A double-FOV star sensor for high dynamic

spacecraft navigation[C]//Proceedings of the SPIE, MIPPR 2009. Yichang, China: [s.n.], 2009.

- [6] LIEBE C C. Star tracker for attitude determination[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10(6): 10-16.
- [7] SUN Y, XIAO Y, GENG Y. On-obrit calibration of star sensor based on a new lens distortion model[C]// The 32 nd Chinese Control Conference. Xi'an, China: IEEE, 2013: 4989-4994.
- [8] 张磊,魏仲慧,何昕. 快速全天自主星图识别[J]. 光学精密工程, 2009,17(4):909-915.

ZHANG L. WEI Z H, HE X. Fast all-sky autonmous star identification[J]. Optics and Precision Engineering, 2009, 17(4): 909-915

- [9] 王丽娜,赵慧,熊智,等. 基于导航恒星几何分布的天文导航定姿系 统误差建模及误差特性分析[J]. 兵工学报,2015,36(10):1933-1942.
 WANG L N, ZHAO H, XIONG Z, et al. Modeling and error characteristics analysis of celestial attitude determination error based on geometric configuration of guide stars[J]. Acta Armamentarii, 2015, 36(10):1933-1942.
- [10] 赵慧,熊智,王丽娜,等. 基于恒星几何构型分布的天文定位误差建 模及误差特性分析[J]. 兵工学报,2015,36(5):813-822. ZHAO H,XIONG Z,WANG L N,et al. Modeling of celestial positioning error and analysis of error characteristics based on distribution of guide stars[J]. Acta Armamentarii, 2015,36(5):813-822.

作者简介:

叶志龙(1988-),男,工程师,硕士,主要研究方向:天文导航及光电 敏感器。 通信地址:上海市闵行区中春路1555号(201109)

电话:(021)24183216

E-mail: zhilongye@163.com

Establishment of a Navigation Star Database Based on Star Distribution

YE Zhilong^{1, 2}, SUN Shuodong^{1, 2}, CHEN Shu^{1, 2}, WU Di^{1, 2}, WU Bin^{1, 2}

(1. Shanghai Institute of Spaceflight Control Technology, Shanghai 201109, China;

2. Shanghai Key Laboratory of Aerospace Intelligent Control Technology, Shanghai 201109, China)

Abstract: In order to further improve attitude precision of star sensors, the influence of star spatial geometric distribution to attitude precision is analyzed and a method of establishing a navigation star database based on star distribution is proposed. On the basis of analyzing the current star database, Hipparcos is selected as the basic star database, while, dark-star and double-star are deleted in the star database, and then star spatial geometric distribution in every FOV (Field of View) is analyzed and compared while traversing all-sky, three stars which determine the worst attitude precision are deleted. Finally, Traversing compensation star database is executed to ensure the uniformity of star distribution. The experimental results show that all-sky recognition rate is 100% by using the star database made by the proposed method in all celestial orbit tests, and the areas with more than 10 stars distribution r account for 97.64%. The porposed method is of good coverage, and can effectively improve the attitude accuracy.

Key words: navigation star table; star distribution; attitude precision; star sensor

High lights:

- Star distribution is considered to evaluate navigation star database.
- 100% all-sky recognition rate and good star coverage can be achieved.
- Better attitude precision can be obtained by proposed star database.

[责任编辑: 宋宏, 英文审校: 朱恬]