



邓思超, 汪小卫, 徐振亮, 吴胜宝, 王书廷

#### An Analysis of Aerodynamic Characteristics of Reusable Rocket's First Sub-Stage with Grid Rudder and Glider

DENG Sichao, WANG Xiaowei, XU Zhenliang, WU Shengbao, and WANG Shuting

Journal of Deep Space Exploration

在线阅读 View online: https://doi.org/10.15982/j.issn.2096-9287.2022.20210152

## 您可能感兴趣的其他文章

#### Articles you may be interested in

### 重复使用运载火箭栅格舵选型设计与工艺方案研究

Research on Design and Process Program for Grid Fin of Reusable Rocket 深空探测学报(中英文). 2021, 8(1): 51-61

#### 垂直着陆过程推进剂流动行为特性及影响分析

Propellant Flow Characteristics in Tank and Related Impact Analysis During the Vertical Landing Stage 深空探测学报(中英文). 2021, 8(1): 42–50

#### 一种深空粒子采样返回探测器构型设想

Study on the Configuration of Deep Space Particles Sampling and Return Spacecraft 深空探测学报(中英文). 2019, 6(1): 96–102

## 长征八号: 长征火箭系列商业化与智慧化的先行者

LM-8: the Pioneer of Long March Rocket Series on the Innovations of Commercialization and Intelligence 深空探测学报(中英文). 2021, 8(1): 3-16

## 重型运载火箭扩张结构失效行为分析

Failure Behavior Analysis of Expansion Structure of Heavy–Lift Carrier Rocket 深空探测学报(中英文). 2020, 7(3): 311–318

## 商业化液体火箭箭体结构低成本快捷制造技术

Low-cost and Fast Manufacturing Technology for Commercial Liquid Rocket Structure 深空探测学报(中英文). 2021, 8(1): 70-79



关注微信公众号,获得更多资讯信息

Journal of Deep Space Exploration

# 基于栅格舵和滑翔翼的垂直起降火箭再入返回气动特性

邓思超, 汪小卫, 徐振亮, 吴胜宝, 王书廷

(中国运载火箭技术研究院研究发展部,北京100096)

摘 要:针对基于栅格舵和滑翔翼的两种垂直起降火箭一子级再入返回段的气动特性进行了仿真分析,得到了两种构型一子级的气动特性,分析了其流动结构特征,并研究了气动特性随马赫数(*Ma*)和攻角的变化规律。结果显示:基于栅格舵构型的一子级轴向力系数和法向力系数随马赫数先增大后减小;基于滑翔翼构型的一子级在小攻角下轴向力系数和法向力系数在马赫数大于2后随马赫数增大而逐渐减小。通过对比可知,基于栅格舵构型一子级的静稳定性优于滑翔翼构型一子级,更适合于需要精确控制落点的重复使用任务;基于滑翔翼构型一子级的升阻比高于栅格舵构型,更适合于需要远距离滑翔的重复使用任务。

关键词:栅格舵;滑翔翼;一子级;可重复使用火箭

中图分类号: V211 文献标识码: A 文章编号: 2096-9287(2022)05-0483-09

DOI:10.15982/j.issn.2096-9287.2022.20210152

**引用格式:**邓思超,汪小卫,徐振亮,等.基于栅格舵和滑翔翼的垂直起降火箭再入返回气动特性[J].深空探测学报(中英文),2022,9(5):483-491.

**Reference format:** DENG S C, WANG X W, XU Z L, et al. An analysis of aerodynamic characteristics of reusable rocket's first sub-stage with grid rudder and glider[J]. Journal of Deep Space Exploration, 2022, 9 (5) : 483-491.

# 引 言

随着以美国太空探索技术公司(SpaceX)、维珍 银河公司(Virgin Galaxy)和蓝色起源公司(Blue Origin)为代表的太空公司的兴起,太空旅游、商业发 射等产业蓬勃发展,世界对低成本、可重复使用运载 器的发射需求进一步增长<sup>[1]</sup>。

"猎鹰9号"(Falcon-9)火箭是SpaceX公司研制的 可重复使用运载火箭,采用栅格舵作为一子级垂直返 回过程中的稳定控制面。在一子级回收过程中,栅格 舵打开,且进行摆动,用于一子级回收过程中调整姿态,实现落区控制<sup>[2-6]</sup>。蓝色起源公司的"新格伦" (New Glenn)重复使用火箭以第一位完成绕地球轨道 飞行的美国宇航员约翰•格伦(John Glenn)的名字命 名,其运载能力将超过SpaceX的"重型猎鹰"(Falcon Heavy)和联合发射联盟(United Launch Alliance, ULA)的"德尔塔IV型"重型火箭(Delta IV Heavy)"<sup>[7-0]</sup>。 不同于SpaceX采用栅格舵进行回收控制的外形,"新格 伦"火箭第一级采用两片滑翔翼和4片空气动力侧翼, 以满足再入返回阶段气动减速和控制的需求<sup>[11]</sup>。

收稿日期: 2021-12-10 修回日期: 2022-07-06 基金项目: 国家自然科学基金资助项目(52005514, 62173301) 本文主要对基于栅格舵和滑翔翼的两种垂直起降 火箭一子级再入返回段的气动特性进行计算,分析其 不同攻角再入的气动特性规律,研究其性能的优劣和 任务适用模式。

## 1 物理模型和数值方法

"猎鹰9号"火箭是SpaceX公司研制的中型、低成本、两级构型的全液体运载火箭。自2010年"猎鹰9号" 火箭v1.0型首飞成功开始,该系列火箭经历大量技术 上的升级换代,期间推出"猎鹰9 v1.1型""猎鹰9 v1.2-FT型"(包含Block 1-4亚型),最终定型在"猎鹰9 v1.2-Block 5"。栅格舵是一种由许多栅格组成的具有 蜂窝式结构的新型弹翼,用作火箭垂直返回的控制 面,如图1所示。

"新格伦"火箭第一级具有空气动力滑翔翼,如 图2所示。当一级分离后调转方向并再次点火,空气动 力滑翔翼可减缓下降速度,并在着陆前展开6个着陆 支架,最终将垂直降落在海上的一艘无人平台上。"新 格伦"火箭尾部的两片滑翔翼和级间段的4片空气动 力侧翼,可控制箭体飞向着陆点并实施着陆,同时取 消了再入减速点火,节省了箭体返回所需的大量推 进剂。



图 1 "猎鹰9号"火箭一级外形示意图 Fig. 1 Layout of Falcon-9's first sub-stage



图 2 "新格伦"火箭一级外形示意图 Fig. 2 Layout of New Glenn's first sub-stage

采用有限体积(Finite Volume)方法,通过数值 求解三维坐标系下的Navier-Stokes方程<sup>[12]</sup>进行数值模 拟。采用时间相关法求解流场,通过有限体积法离散 方程,将流场划分成一系列有限大小的体积单元,每 一个体积单元上都有一个节点作为代表,将各方程进 行分离求解。离散方程的统一形式可表示为

$$\frac{\mathrm{d}}{\mathrm{d}t}(\rho\phi V)_{P_0} + a_0\phi_{P_0} = \sum_{j=1}^N a_j\phi_{P_j} + b_0 \tag{1}$$

对于稳态过程,  $\frac{d}{dt}(\rho\phi V)_{P_0} = 0$ 。式(1)中:  $\rho$  为 大气密度;  $\phi$ 为广义变量, 代表流场内的待求参数(如 速度、温度等);  $P_0$ 为控制容积中心节点;  $P_j$ 为其周 围节点; V为控制容积体积; j为控制容积中界面的角 标; N为控制容积的界面数;  $a_0 \pi a_j$ 分别为离散方程中 对应于 $P_0 \pi P_i$ 的算子系数;  $b_0$ 为离散方程源项。

采用Spalart-Allmaras (SA) 一方程湍流模型<sup>[13]</sup>来

计算湍流效应,该模型适用于无限制流和附着流动, 目前已经广泛应用于工程实际中,尤其是在火箭、飞 机机翼、翼身组合体等绕流的数值模拟中<sup>[14]</sup>。SA模型 的控制方程如下

$$\frac{\mathrm{d}}{\mathrm{d}t}(\rho\tilde{v}) = G_v + D_v - Y_v \tag{2}$$

其中: ν̃为模型因变量; *G<sub>ν</sub>、D<sub>ν</sub>*和*Y<sub>ν</sub>*分别为湍流黏性生成项、黏性扩散项和黏性耗散项,具体如下

$$G_{\nu} = C_{b1} \rho \tilde{S} \,\tilde{\nu} \tag{3}$$

$$D_{\nu} = \frac{1}{\sigma_{\tilde{\nu}}} \left[ \frac{\partial}{\partial x_j} \left( (\mu + \rho \tilde{\nu}) \frac{\partial \tilde{\nu}}{\partial x_j} \right) + C_{b2} \left( \frac{\partial \tilde{\nu}}{\partial x_j} \right)^2 \right]$$
(4)

$$Y_{\nu} = C_{w1} \rho f_{w} \left(\frac{\tilde{\nu}}{d}\right)^{2}$$
(5)

湍流黏性系数可以由下式得出

$$v_t = \tilde{v} f_{v1} \tag{6}$$

式(3)~(6)中,各系数如下

$$f_{\nu 1} = \frac{\chi^3}{\chi^3 + C_{\nu 1}^3} \chi = \frac{\tilde{\nu}}{\nu}$$
$$\tilde{S} = S + \frac{\tilde{\nu}}{\kappa^2 d^2} f_{\nu 2} S = \sqrt{2\Omega_{ij}\Omega_{ij}}$$
$$f_{\nu 2} = 1 - \frac{\chi}{1 + \chi f_{\nu 1}} \Omega_{ij} = \frac{1}{2} \left( \frac{\partial u_i}{\partial x_j} - \frac{\partial u_j}{\partial x_i} \right)$$
$$f_w = g \left[ \frac{1 + C_{w 3}^6}{g^6 + C_{w 3}^6} \right]^{\frac{1}{6}} g = r + C_{w 2} (r^6 - r)$$

其中: v、 $\mu$ 分别为分子运动黏性系数和分析动力黏性 系数;  $f_{v1}$ 为阻尼函数; d为该控制单元的物面距;  $\Omega$ 为 涡量的模; u为速度。出现的常数如下:  $C_{b1} = 0.1335$ ,  $C_{b2} = 0.622$ ,  $\sigma_{\bar{v}} = 2/3$ ,  $C_{v1} = 7.1$ ,  $C_{w1} = \frac{C_{b1}}{\kappa^2} + \frac{1+C_{b2}}{\sigma_{\bar{v}}}$ ,  $C_{w2} = 0.3$ ,  $C_{w3} = 2.0$ ,  $\kappa = 0.4187$ 。

计算时采用的空间格式为高分辨率的Roe通量差分裂(Flux Difference Splitting, FDS)格式,时间格式为高可靠性、高效率的LU-SGS(Lower-Upper Symmetric Gauss-Seidel)格式。

## 2 计算网格及边界条件

#### 2.1 计算网格

栅格舵构型一子级外形示意如图3所示。一子级全长17m,直径3m,质心距火箭原点的相对距离为0.6,力矩参考点为(0,0,0)。建模时对发动机喷

管里的复杂结构进行简化处理,栅格舵与一子级连接 部位的结构也做了简化。对栅格舵构型一子级周围流 体区域进行网格划分,栅格翼网格采用分区对接网格 技术,以O型网格为主。区与区之间满足光滑过渡, 在边界层和栅格舵前缘部分适当加密。其中亚音速流 场域取为15倍的参考长度,超音速流场域选用3倍的参 考长度,计算网格量1000万。箭体远场网格示意如 图4所示。



图 3 栅格舵构型一子级外形示意图 Fig. 3 The layout sketch maps of the first sub-stage with gridrudder



图 4 栅格舵构型一子级远场网格 Fig. 4 Mesh for numerical simulation of the first sub-stage with grid rudder

滑翔翼构型一子级外形示意如图5所示,一子级全 长20 m,直径3.5 m,质心距火箭原点的相对距离为 0.6,力矩参考点为(0,0,0)。建模时对发动机喷 管里的复杂结构进行简化处理,对滑翔翼构型一子级 周围流体区域进行网格划分,采用结构化全模网格。 在靠近箭体区域进行了必要的加密,边界网格 y<sup>+</sup><100。由于主要计算状态为超音速,计算区域可适 当缩小,流场域选用3倍的参考长度,全箭采用网格数 约为273万,箭体远场网格示意如图6所示。

为了验证网格无关性,以带栅格舵一子级为例, 对一子级生成粗、中、密3套网格,网格量及第一层网 格高度见表1。以马赫数(*Ma*)4、攻角30°,侧滑角 0°的计算条件对3套网格进行了数值模拟,获得一子级 轴向力系数*C*<sub>A</sub>并进行了误差分析。从表1中统计的相 对误差可以看出,3套网格采用的网格量及第一层网格 高度满足气动力计算的网格无关性要求。选取第一层 网格高度为0.01 mm用于气动力的计算,此时网格量适 中,可兼顾计算精度和效率需求。



图 5 滑翔翼构型一子级外形示意图 Fig. 5 The layout sketch maps of the first sub-stage with glider



图 6 滑翔翼构型火箭一级远场网格 Fig. 6 Mesh for numerical simulation of the first sub-stage with glider

表 1 3种计算网格情况 Table 1 Three different kinds of mesh

| 参数                  | 粗       | 中       | 密       |
|---------------------|---------|---------|---------|
| 总网格量/万              | 675     | 1 000   | 1 500   |
| 第一层网格高度/mm          | 0.015   | 0.01    | 0.007   |
| 轴向力系数C <sub>A</sub> | 1.862 9 | 1.860 1 | 1.879 8 |
| $C_A$ 相对误差/%        | 0.15    | _       | 1.06    |

#### 2.2 边界条件

计算区域外边界采用远场边界条件,箭体壁面边 界采用无滑移、绝热壁面边界条件。远场条件根据需 要计算的工况详细给定来流压力、马赫数和方向、温 度以及空气的物性参数(包括:比热、层流黏性系 数、导热系数等);采用理想气体模型,不同飞行状 态对应不同的高度和大气密度。

层流黏性系数和导热系数取为定值;边界条件设定 如图7所示;理想气体的比热容可以表示成温度的函数

$$c_{\rm p} = a_0 + a_1 T + a_2 T^2 + a_3 T^3 \tag{7}$$

式(7)中系数由实验测定,对于理想气体,通常

取  $a_0 = 1\ 161.482$  ,  $a_1 = -2.368\ 8$  ,  $a_2 = 0.014\ 9$  ,  $a_3 = -5.034\ 909 \times 10^{-5}$  。





## 3 结果分析与讨论

## 3.1 流场结构分析

对栅格舵构型一子级和滑翔翼构型一子级再入 返回段10°和30°攻角状态下的气动特性进行数值仿真 计算,得到不同马赫数下的流场结构,如图8~10 所示。



(a) 一子级压力分布云图



(b) 一子级马赫数分布云图

图 8 攻角10°、Ma = 0.8工况栅格舵构型一子级流场分布图 Fig. 8 The velocity flow distribution of the first sub-stage with gridrudder for  $\alpha = 10^\circ$ , Ma = 0.8

对栅格舵构型一子级,亚音速状态下,来流在一 子级头部开始减速,压力升高。经过喷管后,靠近壁 面处,因壁面的黏性影响和攻角的影响,上壁面流动 因绕过一子级而形成了较大范围的分离区,下壁面低 速区范围较小;远离壁面处气流绕过一子级肩部加 速,然后向下游流经栅格舵,3号栅格舵处于靠近壁面 的低速流场区域,1号栅格舵则处于较为接近自由来流 的流场区域中。

超音速状态下,来流在一子级头部形成激波,气 流减速增压,由于攻角的影响,上激波远离壁面,下 激波靠近壁面。经过一子级肩部后膨胀加速,向下游 流经栅格舵,3号栅格舵处于靠近壁面的低速流场区 域,1号栅格舵则处于较为接近自由来流的流场区域中。

亚声速时随着来流马赫数增加,一子级肩部的分 离区先增大然后减小,其形态呈左右非对称分布,至 超音速状态,分离区逐渐减小,其形态逐渐向对称面 靠近形成对称的形态。对比马赫云图可以发现,随着 来流马赫数的增大,一子级头部逐渐形成激波,马赫 数越大,激波越贴体。



(a) 一子级压力分布云图



(b) 一子级马赫数分布云图

图 9 攻角10°、Ma = 2.0工況栅格舵构型一子级流场分布图 Fig. 9 The velocity flow distribution of the first sub-stage with gridrudder for  $\alpha = 10^\circ$ , Ma = 2.0 栅格舵构型一子级的关键控制部件是栅格舵,栅 格舵流场较为复杂,图11为不同马赫数下单独栅格舵 流场图。*Ma*=0.8时,栅格舵在亚音速条件下,来流过 栅格舵前缘绕流膨胀再压缩,在壁面的边界层影响 下,栅格内里的有效横截面面积减少,栅格内里形成 超声速流动区域,并在尾部区域存在结尾激波,流动 重新减速为亚声速流动。



(a) 一子级压力分布云图



(b) 一子级马赫数分布云图



*Ma* = 1.0与*Ma* = 0.8流动类似,随马赫数的增加, 栅格舵前缘亚声速来流减速,通道内气流出现壅塞, 部分流量从栅格外侧溢流。栅格后部的超声速流动区 域增大,轴向力系数明显升高,在*Ma* = 1左右达到峰 值,如图11(b)所示。

*Ma*=1.5时,来流马赫数大于1,需通过激波改变入口流速和压力来调节栅格内流量,从而在栅格入口前方形成一道很强的弓形激波,由于波后仍为亚音速流动,栅格内里流动与*Ma*=1.0时流动近似。

Ma=3.0时,随着马赫数提高,弓形脱体激波逐渐向栅格舵靠近,当大于第二临界马赫数时,超声速气

流能通过收缩通道,此时弓形激波变成斜激波且靠近 舵前缘,相邻栅格产生的两道斜激波大约在上下两片 隔片中间相交,相交区域后方形成一个高压区。

*Ma*=5.0时,激波相交的区域继续向栅格出口方向 移动,波后高压区对隔片下表面压力影响减小,导致 栅格法向力降低,如图11(e)所示。





对滑翔翼构型一子级再入返回段*Ma* = 2.0 ~ 9.0, 10°攻角和30°攻角状态下的气动特性进行数值仿真计 算,得到了各工况的气动计算结果。图12展示了攻角 10°、*Ma* = 2.0工况"新格伦"火箭一子级流场分布图, 在*Ma* = 2.0的超音速状态下,来流在一子级尾部的喷管 处形成激波,气流减速增压,经过一子级肩部后膨胀 加速,向下游流经滑翔翼和侧翼时又产生激波,在一 子级级间段处形成了一个分离区。图13展示了攻角 10°、*Ma* = 9.0工况"新格伦"火箭一子级流场分布图,

2022年

在*Ma* = 9.0的超音速状态下,激波角大幅减小,在一子 级级间段处也形成了一个分离区。图14展示了攻角 30°、*Ma* = 9.0工况"新格伦"火箭一子级流场分布图, 在30°大攻角状态下,来流经过一子级尾部的喷管后, 在背风面产生大的分离区,在迎风面产生贴体激波, 且激波发展至侧翼后,产生相互作用。



(a) x-z平面马赫数分布云图



(b) x-y平面马赫数分布云图





(a) x-z平面马赫数分布云图



(b) x-y平面马赫数分布云图







(b) x-y平面马赫数分布云图

图 14 攻角30°、Ma = 9.0工況滑翔翼构型一子级流场分布图 Fig. 14 The velocity flow distribution of the first sub-stage with glider for  $a = 10^\circ, Ma = 9.0$ 

#### 3.2 气动特性变化规律分析

对于火箭来说,压心和质心之间的相对位置对飞 行中的稳定性起决定性作用,如果压心位于质心之后, 则火箭具有静稳定性,反之具有静不稳定性。在设计 中,一般引入静稳定裕度(η)的概念,如式(8)所示

$$\eta = (x_{\rm cp} - x_{\rm cg}) \times 100\%$$
 (8)

其中: *x*<sub>cp</sub>为压心距火箭原点的相对距离(压心系数); *x*<sub>cg</sub>为质心距火箭原点的相对距离(质心系数)。如果压心和质心的相对位置在飞行中变化很大,将对控制系统设计带来困难,因压心和质心的相对位置控制在一定的范围内。用Δη表征火箭飞行期间质心的移动程度,一般Δη不超过8%,当质心在压心之后,且质心与压心相对位置变化较小时,则为静稳定性较优。

图15展示了栅格舵构型一子级10°和30°攻角下气动力系数随马赫数的变化规律。轴向力系数C<sub>A</sub>随马赫数增大先增大后减小,在*Ma*=2左右达到峰值。法向力系数C<sub>N</sub>的变化规律与轴向力系数C<sub>A</sub>相似,也是随马赫数增大呈现先增大后减小的规律。10°攻角时,俯仰力C<sub>mz</sub>大体上是随着马赫数基本不变。

压心系数x<sub>cp</sub>维持在距离原点0.6 ~ 0.75的位置,在 质心之后,且随着马赫数变化较小,维持在质心位置 附近,因此静稳定性较好。







图16给出了滑翔翼构型一子级10°和30°攻角时的 轴向力系数、法向力系数、俯仰力矩系数和压心系数 随马赫数的变化规律,其中俯仰力矩系数和压心系数 相对于坐标原点。由图可知,在马赫数大于2之后,轴 向力系数C<sub>A</sub>随马赫数没有明显变化,10°攻角的轴向力 系数高于30°攻角。法向力系数C<sub>N</sub>随马赫数增大而逐渐 减小,在马赫数大于5后呈线性减小趋势,30°攻角的 法向力系数要远高于10°攻角。10°攻角时俯仰力矩系 数C<sub>mz</sub>随马赫数变化不大,压心系数x<sub>cp</sub>维持在距离原点 0.35 ~ 0.45的位置,在质心位置(x<sub>cg</sub>=0.6)之前,是 静不稳定的;30°攻角时压心靠后,维持在距离原点 0.80左右的位置,在质心之后,是静稳定的。

通过对比基于栅格舵构型和滑翔翼构型一子级的 压心系数范围可知,在10°和30°攻角下,基于栅格舵 构型的一子级可以维持较大范围的静稳定状态,且在 马赫数和攻角变化时,压心在一定范围内变化,降低 了对舵面控制的要求;而基于滑翔翼构型的一子级在 10°攻角下是静不稳定的状态,对舵面控制效率提出较 高的要求。







图 16 滑翔翼构型一子级气动力系数变化曲线 Fig. 16 Aerodynamic force and moment coefficient at different Machs of the first sub-stage with glider

图17给出了栅格舵构型一子级和滑翔翼构型一子 级升阻比随马赫数的变化规律。栅格舵构型一子级的 10°攻角的升阻比在0.05~0.3之间,随马赫数的增大先 增大再减小;30°攻角的升阻比在0.5~0.8之间,随马 赫数的增大先增大再减小。滑翔翼构型一子级10°攻角 时升阻比在*Ma* = 2时为0.75,之后随马赫数的增大而逐 渐减小,在马赫数大于5后呈线性减小趋势。30°攻角 时升阻比维持在1.0左右。在滑翔阶段,一子级采用 10°以内的小攻角飞行,而10°攻角条件下,滑翔翼构 型一子级的升阻比是栅格舵构型的2~5倍,升力特性 更优越,有利于滑翔段的增升减速。



图 17 两种构型一子级升阻比变化对比曲线 Fig. 17 The comparison of lift and drag ratio at different Machs

通过两种构型一子级的气动特性对比可知,栅格 舵构型一子级的静稳定性优于滑翔翼构型一子级,适 合于需要精确控制落点的任务,可以在指定位置定点 着陆。滑翔翼构型一子级的升阻比较大,更适合需要 远距离滑翔的任务,机动性能更强,可以在更大范围 内选择着陆点。

## 4 结 论

本文对基于栅格舵和滑翔翼的两种构型火箭一子 级再入返回段的气动特性进行了计算和分析,从气动 特性规律、静稳定性和升阻特性3个方面进行了对比, 结论如下。

1)在气动特性分布规律方面,基于栅格舵构型和 滑翔翼构型的火箭一子级,在小攻角下的轴向力系数 *C*<sub>A</sub>、法向力系数*C*<sub>N</sub>、俯仰力矩系数*C*<sub>mz</sub>随*Ma*变化规律 相似;在大攻角下俯仰力矩系数*C*<sub>m</sub>规律不同。

2)在静稳定性方面,小攻角下,基于栅格舵构型 一子级的压心系数位于质心之后,而滑翔翼位于质心 之前,基于栅格舵构型一子级的静稳定性优于滑翔翼 构型一子级,更适合于需要精确控制落点的任务。

3) 在升阻特性方面,基于滑翔翼构型一子级的升 阻比高于栅格舵构型,更适合需要远距离滑翔的任务。



- MARSHALL T. Anover view of the NASA aeronautics test program strategic plan[C]//27th AIAA Aerodynamic Measurement Technology andGround Testing Conference. Reston: AIAA, 2010.
- [2] 郑雄,杨勇,姚世东,等. 法尔肯9 可重复使用火箭发展综述[J]. 导弹 与航天运载技术,2016(2):30-46.
   ZHENG X,YANG Y,YAO S D, et al. Survey and review on development of Falcon 9 reusable rocket[J]. Missiles and Space Vehicles, 2016(2):30-46.
- [3] 牟宇,孙冀伟,秦旭东. 猎鹰9火箭Block5构型首次飞行任务解析[J].
   宇航总体技术,2018,2(5):1-7.
   MOU Y,SUN J W,QIN X D. The analysis of Falcon 9 Block5's

moto Y, SUN J W, QIN X D. The analysis of Falcon 9 Blocks s maiden flight[J]. Astronautical Systems Engineering Technology, 2018,2(5):1-7.

- [4] CLARK S. Falcon 9 launch timeline with Bangabandhu1[EB/OL].
   (2018-05-11)[2022-07-06]. http://spaceflightnow.com/2018/05/11/ falcon-9-launch-timeline-with-Bangabandhu1.
- [5] 胡炜. SpaceX,一时传奇or一世传奇?[M]. 北京:中国宇航出版社, 2015.
- [6] 龙雪丹,魏威. SpaceX商业载人运输系统首次无人试飞解析[J]. 飞航 导弹,2019(3):5-11,44.
- [7] 廖小刚,王岩松. 2018年国外载人航天发展综述[J]. 载人航天, 2019, 25(1):122-127.
   LIAO X G, WANG Y S. Review of human spaceflight development abroad in 2018[J]. Manned Spaceflight, 2019, 25(1):122-127.
- [8] 何慧东,肖武平,苑艺,等. 2020年全球载人航天发展综述[J]. 国际太 空,2021(2):24-37.
- [9] 廖小刚,王岩松. 2020年国外载人航天发展综述[J]. 载人航天,2021,27(1):127-134.
   LIAO X G, WANG Y S. Review of human spaceflight development abroad in 2020[J]. Manned Spaceflight, 2021, 27(1):127-134.
- [10] 王辰等.可重复使用运载火箭发展研究[J]. 飞航导弹,2018(9):18-26.
- [11] SPISZT S, TAYLOR J C, GIBSON D, ETAL. Processing in frared imagery of the SpaceX Falcon first stage reentry during CRS-4 mission[C]//AIAA SPACE and Astronautics Forum and Exposition. Reston: AIAA, 2017.
- [12] BLAZEK J. Computational fluid dynamics: principles and

applications[M]. Oxford: Elsevier Science Ltd, 2001.

[13] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows: AIAA Paper 92-0439[R]. [S. I. ]: AIAA, 1992.

[14] 杨凌,李大春,钟兢军. 不同湍流模型对平面叶栅气动性能预测的研究[J]. 中国科技论文,2017,12(23):2690-2694.
 LI L, LI D C, ZHONG J J, et al. Research on predicting accuracy of turbulence models for transonic plane cascade aerodynamic[J]. China

Sciencepaper, 2017, 12(23): 2690-2694.

作者简介:

**邓思超**(1989-),女,工程师,主要研究方向:气动总体设计。 通讯地址:北京市9200信箱38分箱(100096) 电话:(010)68751305 E-mail:dengsichao89@126.com

# An Analysis of Aerodynamic Characteristics of Reusable Rocket's First Sub-Stage with Grid Rudder and Glider

DENG Sichao, WANG Xiaowei, XU Zhenliang, WU Shengbao, WANG Shuting

(Research and Development Department, China Academy of Launch Vehicle Technology, Beijing 100076, China)

**Abstract:** The aerodynamic characteristics of the reentry stage of the first sub-stage of two vertical take-off and landing rockets based on grid rudder and glider are simulated and analyzed. The aerodynamic characteristics of the first sub-stage of two configurations are obtained. The flow structure characteristics of the sub-stage are analyzed, and the variation of aerodynamic characteristics with Ma number and angle of attack is studied. The results show that the axial and the normal force coefficient of the sub-stage with grid rudder first increase and then decrease with the Ma number. The axial and normal force coefficient of the sub-stage based on glider configuration decrease gradually with the increase of Ma number when Ma number is above 2 at small angle of attack. By comparison, the static stability of the sub-stage with grid rudder configuration is better than the sub-stage with glide configuration, which means that the sub-stage with grid rudder was more suitable for a mission requiring accurate control of the landing point. Meanwhile, the lift-drag ratio of the sub-stage with glider configuration is higher than that of the grid rudder configuration, indicating that the sub-stage with glider was more applicable for long distance gliding.

Keywords: grid rudder; glider; sub-stage; reusable rocket

#### Highlights:

- The aerodynamic characteristics of grid rudder and glider for reusable rocket first sub-stage are compared.
- The sub-stage with grid rudder is more suitable for a mission requiring accurate control of the landing point.
- The sub-stage with glider is more applicable for long distance gliding.

[责任编辑: 宋宏, 英文审校: 宋利辉]