中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校百佳科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强不规则天体引力场中的动力学研究进展

姜宇 宝音贺西

姜宇, 宝音贺西. 强不规则天体引力场中的动力学研究进展[J]. 深空探测学报(中英文), 2014, 1(4): 250-261. doi: 10.15982/j.issn.2095-7777.2014.04.002
引用本文: 姜宇, 宝音贺西. 强不规则天体引力场中的动力学研究进展[J]. 深空探测学报(中英文), 2014, 1(4): 250-261. doi: 10.15982/j.issn.2095-7777.2014.04.002
JIANG Yu, BAOYIN Hexi. Research Trend of Dynamics in the Gravitational Field of Irregular Celestial Body[J]. Journal of Deep Space Exploration, 2014, 1(4): 250-261. doi: 10.15982/j.issn.2095-7777.2014.04.002
Citation: JIANG Yu, BAOYIN Hexi. Research Trend of Dynamics in the Gravitational Field of Irregular Celestial Body[J]. Journal of Deep Space Exploration, 2014, 1(4): 250-261. doi: 10.15982/j.issn.2095-7777.2014.04.002

强不规则天体引力场中的动力学研究进展

doi: 10.15982/j.issn.2095-7777.2014.04.002
基金项目: 国家重点基础研究发展计划(973)计划资助项目(2012CB720000);国家自然科学基金资助项目(11372150);宇航动力学国家重点实验室基金资助项目(2014ADL-DW02)

Research Trend of Dynamics in the Gravitational Field of Irregular Celestial Body

  • 摘要: 小行星探测与彗星探测是深空探测的重要方面.一般来说,小行星和彗星因质量都不足以使得万有引力克服应力达到流体静力学平衡,而具有强不规则的外形.研究强不规则天体引力场中的动力学行为及其内在机制,是探测器被不规则天体捕获并对其形成近距离探测轨道的基础.从引力场模型和动力学行为两个方面综述了强不规则天体引力场中动力学的研究进展,在引力场模型的研究方面介绍了强不规则天体引力场建模的球谐函数摄动展开模型、简单特殊体模型及多面体模型的研究现状,在动力学机制的研究方面介绍了强不规则天体引力场中的周期轨道和拟周期轨道、平衡点、流形、分岔与共振以及混沌运动的研究现状,指出了这些方面研究的重点与难点.分析了强不规则体引力场中动力学的研究趋势.
  • [1] Smith B A, Soderblom L, Beebe R, et al. Encounter with Saturn: Voyager 1 imaging science results[J]. Science, 1981,212(4491):163-191.
    [2] Broadfoot A L, Sandel B R, Shemansky D E, et al. Extreme ultraviolet observations from Voyager 1 encounter with Saturn[J]. Science, 1981,212(4491):206-211.
    [3] Bish D L, Blake D F, Vaniman D T, et al. X-ray diffraction results from Mars Science Laboratory: mineralogy of Rocknest at Gale crater[J]. Science, 2013,341(6153):1238932.
    [4] Blake D F, Morris R V, Kocurek G, et al. Curiosity at Gale crater, Mars: characterization and analysis of the Rocknest sand shadow[J]. Science, 2013,341(6153):1239505.
    [5] Meslin P Y, Gasnault O, Forni O, et al. Soil diversity and hydration as observed by ChemCam at Gale Crater, Mars[J]. Science, 2013,341(6153):1238670.
    [6] Vaniman D T, Bish D L, Ming D W, et al. Mineralogy of a mudstone at Yellowknife Bay, Gale crater, Mars[J]. Science, 2014,343(6169):1243480.
    [7] Walsh K J, Morbidelli A, Raymond S N, et al. A low mass for Mars from Jupiter's early gas-driven migration[J]. Nature, 2011,475(7355):206-209.
    [8] Saito J, Miyamoto H, Nakamura R, et al. Detailed images of asteroid 25143 Itokawa from Hayabusa[J]. Science, 2006,312(5778):1341-1344.
    [9] Jewitt D, Weaver H, Agarwal J. A recent disruption of the main-belt asteroid P/2010 A2[J]. Nature, 2010,467(7317): 817-819.
    [10] Nesvorný D, Bottke Jr W F, Dones L, et al.The recent breakup of an asteroid in the main-belt region[J]. Nature, 2002,417(6890):720-771.
    [11] Zuber M T, Smith D E, Cheng A F, et al. The shape of 433 Eros from the NEAR-Shoemaker laser rangefinder[J]. Science, 2000,289(5487):2097-2101.
    [12] Scheeres D J, Fahnestock E G, Ostro S J, et al. Dynamical configuration of binary near-Earth asteroid (66391) 1999 KW4[J]. Science, 2006,314(5803):1280-1283.
    [13] Tsuchiyama A, Uesugi M, Matsushima T, et al. Three-dimensional structure of Hayabusa samples: origin and evolution of Itokawa regolith[J]. Science, 2011,333(6046):1125-1128.
    [14] Yurimoto H, Abe K I, Abe M, et al. Oxygen isotopic compositions of asteroidal materials returned from Itokawa by the Hayabusa mission[J]. Science, 2011,333(6046):1116-1119.
    [15] Yano H, Kubota T, Miyamoto H, et al. Touchdown of the Hayabusa spacecraft at the Muses Sea on Itokawa[J]. Science, 2006,312(5778):1350-1353.
    [16] Trieloff M, Jessberger E K, Herrwerth I, et al. Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry[J]. Nature, 2003,422(6931):502-506.
    [17] Jutzi M, Asphaug E, Gillet P, et al. The structure of the asteroid 4 Vesta as revealed by models of planet-scale collisions[J]. Nature, 2013,494(7436):207-210.
    [18] Walsh K J, Richardson D C, Michel P. Rotational breakup as the origin of small binary asteroids[J]. Nature, 2008,454(7201):188-191.
    [19] Vernazza P, Binzel R P, Rossi A, et al. Solar wind as the origin of rapid reddening of asteroid surfaces[J]. Nature, 2009,458(7241):993-995.
    [20] Thomas P C, Veverka J, Robinson M S, et al. Shoemaker crater as the source of most ejecta blocks on the asteroid 433 Eros[J]. Nature, 2001,413(6854):394-396.
    [21] Walsh K J, Richardson D C, Michel P. Rotational breakup as the origin of small binary asteroids[J]. Nature, 2008,454(7201):188-191.
    [22] Farnham T L, Schleicher D G, Woodney L M, et al. Imaging and photometry of comet C/1999 S4 (LINEAR) before perihelion and after breakup[J]. Science, 2001,292(5520):1348-1353.
    [23] Hsieh H H, Jewitt D. A population of comets in the main asteroid belt[J]. Science, 2006,312(5773):561-563.
    [24] Snodgrass C, Tubiana C, Vincent J B, et al. A collision in 2009 as the origin of the debris trail of asteroid P/2010 A2[J]. Nature, 2010,467(7317):814-816.
    [25] Küppers M, Bertini I, Fornasier S, et al. A large dust/ice ratio in the nucleus of comet 9P/Tempel 1[J]. Nature, 2005,437(7061):987-990.
    [26] Martins Z, Price M C, Goldman N, et al. Shock synthesis of amino acids from impacting cometary and icy planet surface analogues[J]. Nature Geoscience, 2013(6):1045-1049.
    [27] Sunshine J M, A'Hearn M F, Groussin O, et al. Exposed water ice deposits on the surface of comet 9P/Tempel 1[J]. Science, 2006,311(5766):1453-1455.
    [28] Zolensky M E, Zega T J, Yano H, et al. Mineralogy and petrology of comet 81P/Wild 2 nucleus samples[J]. Science, 2006,314(5806):1735-1739.
    [29] Nuth J A, Hill H G, Kletetschka G. Determining the ages of comets from the fraction of crystalline dust[J]. Nature, 2000,406(6793):275-276.
    [30] Ishii H A, Bradley J P, Dai Z R, et al. Comparison of comet 81P/Wild 2 dust with interplanetary dust from comets[J]. Science, 2008,319(5862):447-450.
    [31] Gloeckler G, Geiss J, Schwadron N A, et al. Interception of comet Hyakutake's ion tail at a distance of 500 million kilometres[J]. Nature, 2000,404(6778):576-578.
    [32] Abe S, Mukai T, Hirata N, et al. Mass and local topography measurements of Itokawa by Hayabusa[J]. Science, 2006,312(5778):1344-1347.
    [33] Soderblom L A, Becker T L, Bennett G, et al. Observations of comet 19P/Borrelly by the miniature integrated camera and spectrometer aboard Deep Space 1[J]. Science, 2002,296(5570):1087-1091.
    [34] Brown M E, Schaller E L. The mass of dwarf planet Eris[J]. Science, 2007,316(5831):1585-1585.
    [35] Pravec P, Šarounová L, Wolf M. Lightcurves of 7 near-Earth asteroids[J]. Icarus, 1996,124(2):471-482.
    [36] Ostro S J, Scott R, Nolan M C, et al. Radar observations of asteroid 216 Kleopatra[J]. Science, 2000,288(5467):836-839.
    [37] Yin Q, Jacobsen S B, Yamashita K, et al. A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites[J]. Nature, 2002,418(6901):949-952.
    [38] Klekociuk A R, Brown P G, Pack D W, et al. Meteoritic dust from the atmospheric disintegration of a large meteoroid[J]. Nature, 2005,436(7054):1132-1135.
    [39] Porubčan V, Kornoš L. The Lyrid Meteor Stream: Orbit and Structure[J]. Earth, Moon and Planets, 2008(102):91-94.
    [40] Newly-discovered, bus-sized asteroid zips by Earth; 2014 HL129 comes closer than Moon[EB/OL].[2014-07-30].http://www.ibtimes.co.in/articles/551075/20140505/bus-size-asteroid-2014-hl129-zips-earth.htm.
    [41] Ćuk M, Burns J A. Effects of thermal radiation on the dynamics of binary NEAs[J]. Icarus, 2005,176(2):418-431.
    [42] Benner L A, Ostro S J, Magri C, et al. Near-Earth asteroid surface roughness depends on compositional class[J]. Icarus, 2008,198(2):294-304.
    [43] Belton M J S, Veverka J, Thomas P, et al. Galileo encounter with 951 Gaspra: First pictures of an asteroid[J]. Science, 1992,257(5077):1647-1652.
    [44] Thomas P C, Veverka J, Simonelli D, et al. The shape of Gaspra[J]. Icarus, 1994,107(1):23-36.
    [45] Gaspra Approach Sequence[EB/OL].[2014-07-30]. http://www.solarviews.com/cap/ast/gaspra4.htm.
    [46] Belton M J S, Chapman C R, Veverka J, et al. First images of asteroid 243 Ida[J]. Science, 1994,265(5178):1543-1547.
    [47] Chapman C R, Veverka J, Thomas P C, et al. Discovery and physical properties of Dactyl, a satellite of asteroid 243 Ida[J]. Nature, 1995,374(6525):783-785.
    [48] Helfenstein P, Veverka J, Thomas P C, et al. Galileo photometry of asteroid 243 Ida[J]. Icarus, 1996,120(1):48-65.
    [49] Geissler P, Petit J M, Durda D D, et al. Erosion and ejecta reaccretion on 243 Ida and its moon[J]. Icarus, 1996,120(1):140-157.
    [50] Sullivan R, Greeley R, Pappalardo R, et al. Geology of 243 Ida[J]. Icarus, 1996,120(1):119-139.
    [51] Ida and dactyl in enhanced color[EB/OL].[2014-07-30].http://www.solarviews.com/cap/ast/idamnclr.htm.
    [52] Vokrouhlický D, Nesvorný D, Bottke W F. The vector alignments of asteroid spins by thermal torques[J]. Nature, 2003,425(6954):147-151.
    [53] Barucci M A, Cheng A F, Michel P, et al. MarcoPolo-R near earth asteroid sample return mission[J]. Experimental Astronomy, 2012,33(2-3):645-684.
    [54] Schulz R, Stuwe J A, Boehnhardt H. Rosetta target comet 67P/Churyumov-Gerasimenko[J]. Astronomy and Astrophysics, 2004,422(1):19-21.
    [55] Gicquel A, Bockelée-Morvan D, Leyrat C, et al. Model of dust thermal emission of comet 67P/Churyumov-Gerasimenko for the Rosetta/MIRO instrument[J]. Planetary and Space Science, 2013(85):214-219.
    [56] Keller H U, Jorda L, Küppers M, et al. Deep impact observations by OSIRIS onboard the rosetta spacecraft[J]. Science, 2005(310):281-283.
    [57] Kozai Y. The motion of a close earth satellite[J]. The Astronomical Journal, 1959(64):367-377.
    [58] Brouwer D. Solution of the problem of artificial satellite theory without drag[J]. The Astronomical Journal, 1959(64):378.
    [59] Izsak I G. A note on perturbation theory[J]. The Astronomical Journal, 1963(68):559-560.
    [60] Lass H, Blitzer L. The gravitational potential due to uniform disks and rings[J]. Celestial Mechanics, 1983,30(3):225-228.
    [61] Balmino G. Gravitational potential harmonics from the shape of a homogeneous body[J]. Celestial Mechanics and Dynamical Astronomy, 1994,60(3):331-364.
    [62] Eckhardt D H, Pestaña J L G. Technique for modeling the gravitational field of a galactic disk[J]. Astrophysics Journal, 2002, 572(2):135-137.
    [63] Elipe A, Riaguas A. Nonlinear stability under a logarithmic gravity field[J]. International Mathematics Journal. 2003(3):435-453.
    [64] Broucke R A, Elipe A. The dynamics of orbits in a potential field of a solid circular ring[J]. Regular and Chaotic Dynamics, 2005, 10(2):129-143.
    [65] Alberti A, Vidal C. Dynamics of a particle in a gravitational field of a homogeneous annulus disk[J]. Celestial Mechanics and Dynamical Astronomy, 2007, 98(2):75-93.
    [66] Najid N E, Elourabi E H, Zegoumou M. Potential generated by a massive inhomogeneous straight segment[J]. Research in Astronomy and Astrophysics, 2011, 11(3):345-352.
    [67] Chappell J M, Chappell M J, Iqbal A, et al. The gravity field of a cube[J]. Physics International, 2012(3): 50-57.
    [68] Werner R A. The gravitational potential of a homogeneous polyhedron or don't cut corners[J]. Celestial Mechanics and Dynamical Astronomy, 1994, 59(3):253-278.
    [69] Werner R A, Scheeres D J. Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia[J]. Celestial Mechanics and Dynamical Astronomy, 1997, 65(3):313-344.
    [70] Esposito P, Roth D, Demcak S. Mars Observer orbit determination analysis[J]. Journal of Spacecraft and Rockets, 1991, 28(5):530-535.
    [71] Hartmann W K. The shape of Kleopatra[J]. Science, 2000, 288 (5467):820-821.
    [72] Descamps P, Ostro S J, Hudson R S, et al. Radar observations of asteroid 216 Kleopatra[J]. Science, 2000,288(5467):836-839.
    [73] Marchis F, Berthier J. Triplicity and physical characteristics of Asteroid (216) Kleopatra[J]. Icarus, 2011,211(2):1022-1033.
    [74] Descamps P, Marchis F, Berthier J, et al. Triplicity and physical characteristics of Asteroid (216) Kleopatra[J]. Icarus, 2011,211(2):1022-1033.
    [75] Ostro S J, Hudson R S, Nolan M C. Radar observations of asteroid 216 Kleopatra[J]. Science, 2000,288(5467):836-839.
    [76] Ostro S J, Rosema K D, Hudson R S, et al. Extreme elongation of asteroid 1620 Geographos from radar images[J]. Nature, 1995,375(6531):474-477.
    [77] Hudson R S, Ostro S J. Physical model of asteroid 1620 Geographos from radar and optical data[J]. Icarus, 1999,140(2):369-378.
    [78] Chiorny V G, Hamanowa H, Reddy V, et al.Detection of the YORP effect in asteroid (1620) Geographos[J]. Astronomy & Astrophys, 2008(489):25-28.
    [79] Pravec P, Wolf M, Šarounová L. Lightcurves of 26 near-Earth asteroids[J]. Icarus, 1998,136(1):124-153.
    [80] Ryabova G O. Asteroid 1620 Geographos: I. Rotation[J]. Solar System Research, 2002,36(2):168-174.
    [81] Benner L A M, Hudson R S, Ostro S J, et al. Radar observations of asteroid 2063 Bacchus[J]. Icarus, 1999,139(2):309-327.
    [82] Hudson R S, Ostro S J. Shape of asteroid 4769 Castalia (1998 PB) from inversion of radar images[J]. Science, 1994,263(5149):940-943.
    [83] Hudson R S, Ostro S J, Harris A W. Constraints on spin state and hapke parameters of asteroid 4769 Castalia using lightcurves and a radar-derived shape model[J]. Icarus, 1997,130(1):165-176.
    [84] Mottola S, Erikson A, Harris A W, et al. Physical model of near-Earth asteroid 6489 Golevka (1991 JX) from optical and infrared observations[J]. The Astronomical Journal, 1997,114(3):1234-1245.
    [85] Müller T G, Sekiguchi T, Kaasalainen M, et al. Thermal infrared observations of the Hayabusa spacecraft target asteroid 25143 Itokawa[J]. Astronomy and Astrophysics, 2005,443(1):347-355.
    [86] Abe S, Mukai T, Hirata N, et al. Mass and local topography measurements of Itokawa by Hayabusa[J]. Science, 2006,312(5778):1344-1347.
    [87] Demura H, Kobayashi S, Nemoto E, et al. Pole and global shape of 25143 Itokawa[J]. Science, 2006,312(5778):1347-1349.
    [88] Fujiwara A, Kawaguchi J, Yeomans D K, et al. The rubble-pile asteroid Itokawa as observed by Hayabusa[J]. Science, 2006, 312(5778):1330-1334.
    [89] Hiroi T, Abe M, Kitazato K, et al. Developing space weathering on the asteroid 25143 Itokawa[J]. Nature, 2006,443(7107):56-58.
    [90] Saito J, Miyamoto H, Nakamura R, et al. Detailed Images of Asteroid 25143 Itokawa from Hayabusa[J]. Science, 2006, 312 (5778):1341-1344.
    [91] Taylor P A, Margot J L, Vokrouhlický D, et al. Spin rate of asteroid (54509) 2000 PH5 increasing due to the YORP effect[J]. Science, 2007, 316(5822):274-277.
    [92] Veverka J, Farquhar B, Robinson M, et al. The landing of the NEAR-Shoemaker spacecraft on asteroid 433 Eros[J]. Nature, 2001, 413(6854):390-393.
    [93] Connors M, Wiegert P, Veillet C. Earth's Trojan asteroid[J]. Nature, 2011, 475(7357):481-483.
    [94] Stooke P. Small body shape models. EAR-A-5-DDR-STOOKE-SHAPE-MODELS-V1.0. NASA planetary data system[R]. Washington D.C.: NASA, 2002.
    [95] Neese C Ed. Small body radar shape models V2.0. EAR-A-5-DDR-RADARSHAPE-MODELS-V2.0, NASA Planetary Data System[R]. Washington D.C.: NASA, 2004.
    [96] Riaguas A, Elipe A, Lara M. Periodic orbits around a massive straight segment[J]. Celestial Mechanics and Dynamical Astronomy, 1999, 73(1/4):169-178.
    [97] Riaguas A, Elipe A, López-Moratalla T. Non-linear stability of the equilibria in the gravity field of a finite straight segment[J]. Celestial Mechanics and Dynamical Astronomy, 2001, 81(3):235-248.
    [98] Arribas A, Elipe A. Non-integrability of the motion of a particle around a massive straight segment[J]. Physics Letters A, 2001(281):142-148.
    [99] Elipe A, Lara M. A simple model for the chaotic motion around (433) Eros[J]. Journal of Astronomy Science, 2003, 51(4):391-404.
    [100] Romero S G, Palacián J F, Yanguas P. The invariant manifolds of a finite straight segment[J]. Monografías de la Real Academia de Ciencias de Zaragoza, 2004(25):137-148.
    [101] Blesa F. Periodic orbits around simple shaped bodies[J]. Monogr. Semin. Mat. García Galdeano, 2006(33):67-74.
    [102] Fukushima T. Precise computation of acceleration due to uniform ring or disk[J]. Celestial Mechanics and Dynamical Astronomy, 2010, 108(4):339-356.
    [103] Linder J F, Lynn J, King F W, et al.Order and chaos in the rotation and revolution of a line segment and a point[J]. Physical Review E, 2010(81):036208.
    [104] Liu X, Baoyin H, Ma X. Equilibria, periodic orbits around equilibria, and heteroclinic connections in the gravity field of a rotating homogeneous cube[J]. Astrophysics and Space Science, 2011(333):409-418.
    [105] Liu X, Baoyin H, Ma X. Periodic orbits in the gravity field of a fixed homogeneous cube[J]. Astrophysics and Space Science, 2011(334):357-364.
    [106] Najid N E, Zegoumou M, Elourabi E H. Dynamical behavior in the vicinity of a circular anisotropic ring[J]. Open Astronomy Journal, 2012(5):54-60.
    [107] Liu X, Baoyin H, Ma X. Dynamics of surface motion on a rotating massive homogeneous body[J]. Science China-Physics, Mechanics and Astronomy, 2013(56):818-829.
    [108] Li X, Qiao D, Cui P. The equilibria and periodic orbits around a dumbbell-shaped body[J]. Astrophysics and Space Science, 2013(348):417-426.
    [109] Takahashi Y, Scheeres D J, Werner R A. Surface gravity fields for asteroids and comets[J]. Journal of Guidance, Control, and Dynamics, 2013, 36(2):362-374.
    [110] Asphaug E, Ostro S J, Hudson R S, et al. Disruption of kilometre-sized asteroids by energetic collisions[J]. Nature, 1998, 393(6684):437-440.
    [111] Mirtich B. Fast and accurate computation of polyhedral mass properties[J]. Journal of Graphics Tools, 1996,1(2):31-50.
    [112] Scheeres D J, Ostro S J, Hudson R S, et al. Orbits close to asteroid 4769 Castalia, Icarus, 1996(121):67-87.
    [113] Scheeres D J, Ostro S J, Hudson R S, et al. Dynamics of orbits close to asteroid 4179 Toutatis. Icarus, 1998,132(1):53-79.
    [114] Scheeres D J, Williams B G, Miller J K. Evaluation of the dynamic environment of an asteroid: applications to 433 Eros[J]. Journal of Guidance, Control, and Dynamics, 2000, 23(3):466-475.
    [115] Scheeres D J. The orbital dynamics environment of 433 Eros[J]. Ann Arbor, 2002(1001):48109-2140.
    [116] Scheeres D J, Broschart S, Ostro S J,et al.The dynamical environment about Asteroid 25143 Itokawa[C]//Proceedings of the Twenty-Fourth International Symposium on Space Technology and Science. [S.l.]: [s.n.], 2004:456-461.
    [117] Scheeres D J, Broschart S, Ostro S J, et al. The dynamical environment about Asteroid 25143 Itokawa: target of the Hayabusa Mission[C]//Proceedings of the AIAA/AAS Astrodynamics Specialist Conference and Exhibit. [S.l.]: AIAA/AAS, 2004:1-12.
    [118] Scheeres D J. Orbital mechanics about small bodies[J]. Acta Astronautica,2012(7):21-14.
    [119] Mondelo J M, Broschart S B, Villac B F. Dynamical analysis of 1: 1 resonances near asteroids: application to Vesta[C]//Proceedings of the 2010 AIAA/AAS Astrodynamics Specialists Conference.Toronto:[s. n.], 2010:1-15.
    [120] Yu Y, Baoyin H. Orbital dynamics in the vicinity of asteroid 216 Kleopatra[J]. The Astronomical Journal, 2012,143(3):62-70.
    [121] Yu Y, Baoyin H. Generating families of 3D periodic orbits about asteroids[J]. Monthly Notices of the Royal Astronomical Society, 2012,427(1):872-881.
    [122] Yu Y, Baoyin H. Resonant orbits in the vicinity of asteroid 216 Kleopatra[J]. Astrophysics and Space Science, 2013,343(1):75-82.
    [123] Jiang Y, Baoyin H, Li J,et al.Orbits and manifolds near the equilibrium points around a rotating asteroid[J]. Astrophysics and Space Science, 2014(349):83-106.
    [124] Jiang Y, Baoyin H. Orbital mechanics near a rotating asteroid[J]. Journal of Astrophysics and Astronomy, 2014,35(1):17-38.
    [125] Hirabayashi M, Scheeres D J. Analysis of Asteroid (216) Kleopatra using dynamical and structural constraints[J]. The Astrophysical Journal, 2014,780(2):160-171.
    [126] Chanut T G G, Winter O C, Tsuchida M. 3D stability orbits close to 433 Eros using an effective polyhedral model method[J]. Monthly Notices of the Royal Astronomical Society, 2014(2383):1-11.
    [127] Wang X, Jiang Y, Gong S. Analysis of the potential field and equilibrium points of irregular-shaped minor celestial bodies[J]. Astrophysics and Space Science, 2014(353):105-121.
    [128] Werner R A, Scheeres D J. Mutual potential of homogeneous polyhedra[J]. Celestial Mechanics and Dynamical Astronomy, 2005, 91(3-4):337-349.
    [129] Fahnestock E G, Scheeres D J. Simulation of the full two rigid body problem using polyhedral mutual potential and potential derivatives approach[J].Celestial Mechanics and Dynamical Astronomy, 2006, 96(3-4):317-339.
    [130] Fahnestock E G, Scheeres D J. Simulation and analysis of the dynamics of binary near-Earth Asteroid (66391) 1999 KW4[J]. Icarus, 2008, 194(2):410-435.
    [131] Riaguas A, Elipe A, Lara M. Periodic orbits around a massive straight segment[J]. Celestial Mechanics and Dynamical Astronomy, 1999, 73(1/4):169-178.
    [132] Riaguas A, Elipe A, López-Moratalla T. Non-linear stability of the equilibria in the gravity field of a finite straight segment[J].Celestial Mechanics and Dynamical Astronomy, 2001, 81(3):235-248.
    [133] Hu W, Scheeres D J. Spacecraft motion about slowly rotating asteroids[J].Journal of Guidance, Control, and Dynamics, 2002, 25(4):765-775.
    [134] Hu W, Scheeres D J. Numerical determination of stability regions for orbital motion in uniformly rotating second degree and order gravity fields[J].Planetary and Space Science, 2004, 52(8):685-692.
    [135] Provisional designations[EB/OL].[2014-07-30].http://www.minorplanetcenter.net/iau/lists/Desigs.html.
    [136] Igumenshchev I V, Shustov B M, Tutukov A V. Dynamics of supershells-Blow-out[J]. Astronomy and Astrophysics, 1990(234):396-402.
    [137] Iben Jr I, Tutukov A V. Helium star cataclysmics[J].The Astrophysical Journal, 1991(370):615-629.
    [138] Yungelson L R, Tutukov A V, Livio M. The formation of binary and single nuclei of planetary nebulae[J].The Astrophysical Journal, 1993(418):794-803.
    [139] Firmani C, Tutukov A V. Bursting and stationary star formation in disks and nuclei of galaxies[J].Astronomy and Astrophysics, 1994(288):713-730.
    [140] Tutukov A V, Yungelson L R. Merging of binary white dwarfs neutron stars and black-holes under the influence of gravitational wave radiation[J]. Monthly Notices of the Royal Astronomical Society, 1994(268):871-879.
    [141] Tutukov A V, Krügel E. The main types of star formation in galactic nuclei[J]. Astronomy and Astrophysics, 1995(299):25-33.
    [142] Tutukov A V, Yungelson L. Double-degenerate semidetached binaries with helium secondaries: cataclysmic variables, supersoft X-ray sources, supernovae and accretion-induced collapses[J].Monthly Notices of the Royal Astronomical Society, 1996,280(4):1035-1045.
    [143] Firmani C, Avila-Reese V, Ghisellini G,et al.Formation rate, evolving luminosity function, jet structure, and progenitors for long gamma-ray bursts[J]. The Astrophysical Journal, 2004,611(2):1033-1045.
    [144] Acharova I A, Lépine J R D, Mishurov Y N, et al. A mechanism for the formation of oxygen and iron bimodal radial distribution in the disc of our Galaxy[J].Monthly Notices of the Royal Astronomical Society, 2010, 402(2): 1149-1155.
    [145] Tutukov A V, Fedorova A V. Formation of planets during the evolution of single and binary stars[J].Astronomy reports, 2012, 56(4):305-314.
    [146] Moore, C. Braids in classical dynamics[J].Physical Review Letters, 1993, 70 (24):3675-3679.
    [147] Galán J, Munoz-Almaraz F J, Freire E, et al. Stability and bifurcations of the figure-8 solution of the three-body problem[J].Physical Review Letters, 2002, 88(24):241101.
    [148] Šuvakov M, Dmitrašinović V. Three classes of newtonian three-body planar periodic orbits[J]. Physical Review Letters, 2013,110(11):114301.
    [149] Jon Cartwright. Physicists discover a whopping 13 new solutions to three-body problem. science. now[EB/OL].(2013-03-08).http://news.sciencemag.org/physics/2013/03/physicists-discover-whopping-13-new-solutions-three-body-problem.
    [150] Hiroi T, Abe M, Kitazato K, et al. Developing space weathering on the asteroid 25143 Itokawa[J]. Nature, 2006,443(7107):56-58.
    [151] Kleine T, Münker C, Mezger K, et al. Rapid accretion and early core formation on asteroids and the terrestrial planets from Hf-W chronometry[J]. Nature, 2002,418(6901):952-955.
    [152] Sánchez P, Scheeres D J. Simulating asteroid rubble piles with a self-gravitating soft-sphere distinct element method model[J]. The Astrophysical Journal, 2011,727(2):120.
    [153] Tancredi G, Maciel A, Heredia L, et al. Granular physics in low-gravity environments using discrete element method[J]. Monthly Notices of the Royal Astronomical Society, 2012,420(4):3368-3380.
    [154] Tobias S M, Dagon K, Marston J B. Astrophysical fluid dynamics via direct statistical simulation[J]. The Astrophysical Journal, 2011,727(2):127-138.
    [155] Genel S, Vogelsberger M, Nelson D, et al. Following the flow: tracer particles in astrophysical fluid simulations[J]. Monthly Notices of the Royal Astronomical Society, 2013,435(2):1426-1442.
    [156] Smale S. Mathematical problems for the next century[J]. The Mathematical Intelligencer, 1998,20(2):7-15.
  • [1] 石玉, 舒磊正, 张皓.  与地共轨小行星附近测绘轨道的性能分析与评估 . 深空探测学报(中英文), 2022, 9(4): 391-399. doi: 10.15982/j.issn.2096-9287.2022.20220044
    [2] 崔书豪, 王悦, 张瑞康.  双小行星系统不规则引力场中的共振轨道动力学研究 . 深空探测学报(中英文), 2022, 9(4): 382-390. doi: 10.15982/j.issn.2096-9287.2022.20220024
    [3] 辛鹏飞, 吴跃民, 荣吉利, 危清清, 刘宾, 刘鑫.  月面探测器圆形薄膜太阳翼展开动力学建模与分析 . 深空探测学报(中英文), 2020, 7(3): 255-263. doi: 10.15982/j.issn.2095-7777.2020.20191128005
    [4] 杨洪伟, 宝音贺西.  小行星附近制导与控制研究综述 . 深空探测学报(中英文), 2019, 6(2): 179-188. doi: 10.15982/j.issn.2095-7777.2019.02.010
    [5] 李春来, 刘建军, 严韦, 封剑青, 任鑫, 刘斌.  小行星探测科学目标进展与展望 . 深空探测学报(中英文), 2019, 6(5): 424-436. doi: 10.15982/j.issn.2095-7777.2019.05.003
    [6] 张荣桥, 黄江川, 赫荣伟, 耿言, 孟林智.  小行星探测发展综述 . 深空探测学报(中英文), 2019, 6(5): 417-423,455. doi: 10.15982/j.issn.2095-7777.2019.05.002
    [7] 李宗良, 高俊, 刘国西, 周成, 汤章阳, 邹达人.  小行星探测电推进系统方案研究 . 深空探测学报(中英文), 2018, 5(4): 347-353. doi: 10.15982/j.issn.2095-7777.2018.04.004
    [8] 常汉江, 王碧, 罗凯, 田强, 胡海岩.  模块化桁架索网天线找形与展开动力学研究 . 深空探测学报(中英文), 2017, 4(4): 325-332. doi: 10.15982/j.issn.2095-7777.2017.04.003
    [9] 于登云, 张玉花, 褚英志, 李昊, 王建炜, 杜冬.  深空探测器模块化结构动力学研究 . 深空探测学报(中英文), 2016, 3(3): 268-274. doi: 10.15982/j.issn.2095-7777.2016.03.011
    [10] 姜宇, 张韵, 任兆欣, 宝音贺西, 李恒年.  三小行星系统216 Kleopatra引力场中的动力学 . 深空探测学报(中英文), 2015, 2(4): 352-357. doi: 10.15982/j.issn.2095-7777.2015.04.009
    [11] 杨福全, 赵以德, 李娟, 耿海, 张天平, 周海燕.  主带小行星采样返回任务中的离子电推进应用方案 . 深空探测学报(中英文), 2015, 2(2): 168-173. doi: 10.15982/j.issn.2095-7777.2015.02.011
    [12] 王峰, 杨波, 胡存明, 吴昊, 费晓星.  小行星探测用双谱段相机设计 . 深空探测学报(中英文), 2015, 2(2): 174-179. doi: 10.15982/j.issn.2095-7777.2015.02.012
    [13] 周必磊, 陆希, 尤伟.  载人小行星探测的总体方案设想 . 深空探测学报(中英文), 2015, 2(1): 43-47. doi: 10.15982/j.issn.2095-7777.2015.01.006
    [14] 袁旭, 朱圣英, 乔栋, 崔平远.  小天体着陆动力学参数不确定性影响分析 . 深空探测学报(中英文), 2014, 1(2): 134-139.
    [15] 平劲松.  月球动力学专辑 . 深空探测学报(中英文), 2014, 1(3): 163-163.
    [16] 倪彦硕, 宝音贺西, 李俊峰.  考虑太阳摄动的小行星附近轨道动力学 . 深空探测学报(中英文), 2014, 1(1): 67-74.
    [17] 于洋, 宝音贺西.  小天体附近的轨道动力学研究综述 . 深空探测学报(中英文), 2014, 1(2): 93-104.
    [18] AlexanderGUSEV, 孟治国, 平劲松, NataliaPETROVA, HideoHANADA.  多层月球模型的自转动力学与着陆探测 . 深空探测学报(中英文), 2014, 1(3): 175-180. doi: 10.15982/j.issn.2095-7777.2014.03.002
    [19] 张大鹏, 雷勇军.  深空探测返回舱着陆冲击动力学分析 . 深空探测学报(中英文), 2014, 1(2): 150-155.
    [20] 尚海滨, 崔平远, 熊旭, 武小宇.  载人小行星探测目标选择与轨道优化设计 . 深空探测学报(中英文), 2014, 1(1): 36-43.
  • 加载中
计量
  • 文章访问数:  3398
  • HTML全文浏览量:  30
  • PDF下载量:  1701
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-30
  • 修回日期:  2014-08-30

强不规则天体引力场中的动力学研究进展

doi: 10.15982/j.issn.2095-7777.2014.04.002
    基金项目:  国家重点基础研究发展计划(973)计划资助项目(2012CB720000);国家自然科学基金资助项目(11372150);宇航动力学国家重点实验室基金资助项目(2014ADL-DW02)

摘要: 小行星探测与彗星探测是深空探测的重要方面.一般来说,小行星和彗星因质量都不足以使得万有引力克服应力达到流体静力学平衡,而具有强不规则的外形.研究强不规则天体引力场中的动力学行为及其内在机制,是探测器被不规则天体捕获并对其形成近距离探测轨道的基础.从引力场模型和动力学行为两个方面综述了强不规则天体引力场中动力学的研究进展,在引力场模型的研究方面介绍了强不规则天体引力场建模的球谐函数摄动展开模型、简单特殊体模型及多面体模型的研究现状,在动力学机制的研究方面介绍了强不规则天体引力场中的周期轨道和拟周期轨道、平衡点、流形、分岔与共振以及混沌运动的研究现状,指出了这些方面研究的重点与难点.分析了强不规则体引力场中动力学的研究趋势.

English Abstract

姜宇, 宝音贺西. 强不规则天体引力场中的动力学研究进展[J]. 深空探测学报(中英文), 2014, 1(4): 250-261. doi: 10.15982/j.issn.2095-7777.2014.04.002
引用本文: 姜宇, 宝音贺西. 强不规则天体引力场中的动力学研究进展[J]. 深空探测学报(中英文), 2014, 1(4): 250-261. doi: 10.15982/j.issn.2095-7777.2014.04.002
JIANG Yu, BAOYIN Hexi. Research Trend of Dynamics in the Gravitational Field of Irregular Celestial Body[J]. Journal of Deep Space Exploration, 2014, 1(4): 250-261. doi: 10.15982/j.issn.2095-7777.2014.04.002
Citation: JIANG Yu, BAOYIN Hexi. Research Trend of Dynamics in the Gravitational Field of Irregular Celestial Body[J]. Journal of Deep Space Exploration, 2014, 1(4): 250-261. doi: 10.15982/j.issn.2095-7777.2014.04.002
参考文献 (156)

目录

    /

    返回文章
    返回
    Baidu
    map