中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校百佳科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间核动力源的安全性研究进展

胡文军 陈红永 陈军红 李上明 胡绍全 唐玉华

胡文军, 陈红永, 陈军红, 李上明, 胡绍全, 唐玉华. 空间核动力源的安全性研究进展[J]. 深空探测学报(中英文), 2017, 4(5): 453-465. doi: 10.15982/j.issn.2095-7777.2017.05.006
引用本文: 胡文军, 陈红永, 陈军红, 李上明, 胡绍全, 唐玉华. 空间核动力源的安全性研究进展[J]. 深空探测学报(中英文), 2017, 4(5): 453-465. doi: 10.15982/j.issn.2095-7777.2017.05.006
HU Wenjun, CHEN Hongyong, CHEN Junhong, LI Shangming, HU Shaoquan, TANG yuhua. Advances of Safety Research on Nuclear Space Power Sources[J]. Journal of Deep Space Exploration, 2017, 4(5): 453-465. doi: 10.15982/j.issn.2095-7777.2017.05.006
Citation: HU Wenjun, CHEN Hongyong, CHEN Junhong, LI Shangming, HU Shaoquan, TANG yuhua. Advances of Safety Research on Nuclear Space Power Sources[J]. Journal of Deep Space Exploration, 2017, 4(5): 453-465. doi: 10.15982/j.issn.2095-7777.2017.05.006

空间核动力源的安全性研究进展

doi: 10.15982/j.issn.2095-7777.2017.05.006

Advances of Safety Research on Nuclear Space Power Sources

  • 摘要:

    同位素热/电源以及空间核反应堆在深空探测任务中有重要应用。通过调研其技术特点以及国际上针对核能空间应用安全性的相关规范,研究了其空间安全性规范的法律法规。以ALRH(Apollo Lunar Radiosotope Heater,阿波罗月球任务同位素热源)、GPHS(General Purpose Heater Source,通用型热源)、LWRHU(Lighted Weighted Radiosotope Heater Unit,轻量放射性同位素热源)、MMRTG(Multi-Mission Radioisotope Thermoelectric Generator,多任务型放射性同位素电源)等同位素热/电源及俄罗斯热离子空间反应堆电源(TOPAZ-II型号)为例,结合美俄开展的同位素热/电源的系列安全性试验,重点关注了不同型号的试验及分析技术细节,并分析了同位素热/电源的空间应用安全评价方法,可为开展相关研发提供技术参考。

  • [1] Lee H C,Lim H S,Han T Y. A neutronic feasibility study on a small LEU fueled reactor for space applications[J]. Annals of Nuclear Energy. 2015,77:35-46
    [2] Les J,Michael M,Bryan P,et al. Development priorities for in-space propulsion technologies[J]. Acta Astronautica. 2013,82:148-152
    [3] Bragg-Sitton,Shannon M,et al. Ongoing space nuclear systems development in the United States[C]//2011 International Nuclear Atlantic Conference-INAC 2011.Belo Horizonte:INAC,2011.
    [4] 周继时,朱安文,耿言. 空间核能源应用的安全性设计、分析和评价[J]. 深空探测学报,2015,2(4):302-311
    Zhou J S,Zhu A W,Gen Y. The safety design,analysis and evaluation of nuclear power application in space[J]. Journal of Deep Space Exploration,2015,12(4):302-311
    [5] Rivert A B. Applicability of trends in nuclear safety analysis to space nuclear power systems[J]. Aip Conforence,1993 ,271 (1):435-437
    [6] Steven A. Background on space nuclear power[J]. Science &; Global Security,2007 ,1 (1-2) :93-107
    [7] Roger XL. Nuclear safety,legal aspects and policy recommendations for space nuclear power and propulsion systems[J]. Acta Astronutica,2006,59:398-412
    [8] Gary L B. Space nuclear power:opening the final frontier[C]// 4th International Energy Conversion Engineering Conference and Exhibit. San Diego,California:AIAA,2006.
    [9] Dean K. Nuclear security and nuclear emergencey response in China[J]. Science & Global Security,2012,20:30-63
    [10] 尹玉海,龙杰.《关于在外层空间使用核动力源的原则》之再思考[J]. 北京航空航天大学学报(社会科学版),2013,26(5): 27-32
    YIN Y H. Long J. Reconsideration of the principles relevant to the use of nuclear power sources in outer space[J]. Journal of Beijing University of Aeronautics and Astonautics(Social Sciences Edition),2013,26(5):27-32
    [11] 尹玉海,龙杰. 美国外空核动力源安全机制对中国的启示[J]. bob手机在线登陆学报(社会科学版),2014,16(2):105-111
    YIN Y H. Long J. The U.S. outer space nuclear power sources security mechanism and its implication for China[J]. Journal of Beijing Institute of Technology(Social Sciences Edition),2014,16(2):105-111
    [12] Committee on the Peaceful Uses of Outer Space. Principles relevant to the use of nuclear sources in outer space[R]. UN G.A. Resolution A/Res/47/68(Dec. 14,1992);GAOR,47th Session,Supp. No. 20,UN Doc,A/47/20,1992.
    [13] Summerer L,Wilcox R E,Bechtel R. The International safety framework for nuclear power source applications in outer space-useful and substantial guidance[J]. Acta Astronautica,2015,111,(1):89-101
    [14] Roger X L. Nuclear safety,legal aspects and policy recommendations for space nuclear power and propulsion systems[J]. Acta Astronutica,2006,59:398-412
    [15] Lyle L R,Meera M,Bart W B. Nuclear Safety Analysis for the Mars Exploration Rover 2003 Project[C]//. Henry Firstenberg,Space Technology and Applications International Forum–STAIF 2004,Albuquerque,[s.n.],2004.
    [16] Daniel J C,John B,Christopher A. J.et al. Nuclear Risk Assessment for the Mars 2020 Mission Environmental Impact Statement[R]. Sandia National Laboratories,SANDIA REPORT,SAND2013-10589,January 2014.
    [17] Tate,R E,The Light Weight Radioisotope Heater Unit(LWRHU): A Technical Description of the Reference Design[R],Los Alamos National Laboratory,LA-9078-MS,January 1982.
    [18] National Aeronautics and Space Administration,Mars Exploration Rover Delta II Final SAR Data book[R]. May 19,2002.
    [19] ASCA,Incorporated,Mars 2020 Launch Accident Probability Data for EIS Risk Assessment,Revision Draft,AR 13-02[R]. Prepared for National Aeronautics and Space Administration,Kennedy Space Center,September 2013.
    [20] Sforza P M,Shooman M L,Pelaccio D G.A safety and reliability analysis for space nuclear thermal propulsion systems[J]. Acta Astronautica,1993,30:67-83.
    [21] Gary L B,Thomas J M. NASA program planning on nuclear electric propulsion[C]// AIAA Space Program and Technologies Conference,Huntsville:AIAA,1992,AIAA-92-1557.
    [22] Cooper R H,Moore J P. Materials in space nuclear power systems[R]. CONF-911107-28-Extd.Abst.1991.
    [23] Mohamed S E,Michel J T. A review of refractory metal alloys and mechanically alloyed-oxide dispersion strengthened steels for space nuclear power systems[J]. Journal of Nuclear Materials,2005,340:93-112
    [24] Wilcox R. Safety in the design and development tof United States space NPS applications[C]// In Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space,Volume 48thsession. Vienna,Austria;[s.n.],2011.
    [25] Bechtel R D,Lipinski R J,Smith J A. U.S. approach to risk assessment and its role in implementing an effective safety program for space nuclear power sources applications[C]// Scientific and Technical Subcommittee of the Committee on the Peaceful Uses of Outer Space,volume Forty-eighth session. Vienna,Austria;[s.n.],2011.
    [26] Bennett,Gary L. “Soviet Space Nuclear Reactor Incidents: perception Versus Reality”,in Space Nuclear Power Systems 1989[M]. Hoover:Orbit Book Company,1992.
    [27] Bennett,Gary L. The safety review and approval process for space nuclear power sources[J]. Nuclear Safety,1991,32(1):1-18
    [28] Charles O,Grigsby. Comparison of general purpose heat source testing with the ANSI,N43.6-1997(R 1989)[R].[S.l.]:ANSI,1998.
    [29] Kelly D P,Avona V L. Apollo lunar radioisotopic heater summary report,MLM-1637[R].1969.
    [30] Kelly D P ,Avona V L. Apollo Lunar radioistotopic heater aerothermodynamic summary report,SC-RR-69-125 [R]. 1969.
    [31] Rinehart G H. Design characteristics and fabrication of radioisotope heat sources for space missions[J]. Progress in Nuclear Energy,2001,39(1-2):305-319
    [32] Safety status report for the Ulysses mission,Accident analysis(Book 1),OSDS4202[R]. 1990.
    [33] Final safety analysis report for the Galileo mission,Volume II (Book 1),Accident model document,87SDS4213[R]. 1988.
    [34] Bechtel R D,Lipinski R J,Smith J A,et al. U.S. Approach to risk assessment and its role in implementing an effective safety program for space nuclear power sources applications,A/AC.105/C.1/2011/CRP.5.[R]. USA[s.n.],2011.
    [35] Cull T A,George T G,Pavone D. General-purpose heat source development safety verification test program: explosion overpressure test series,LA-10697-MS [R]. 1986.
    [36] George T G,Tate R E,Axler K M. General-purpose heat source development safety verification test program:bullet/fragment test series ,LA-1036-MS [R]. 1985.
    [37] George T G,General-purpose heat source development safety verification test program:titanium bullet/fragment test series ,LA-10724-MS [R]. 1986.
    [38] Environmental assessment of general-purpose heat source safety verification testing,DOE/EA-1025 [R]. 1995.
    [39] Cull T A,General-purpose heat source development: extended series test program large fragment tests,LA-11597-MS [R]. 1989.
    [40] Reimus M A H,Hinckley J E. General-purpose heat source:research and development program,radioisotope thermoelectric generator/thin fragment impact test,LA-13220 [R]. 1996.
    [41] Reimus M A H,Hinckley J E,George T.G. General-purpose heat source:research and development program,radioisotope thermoelectric generator impact tests:RTG-1 and RTG-2,LA-13147 [R]. 1996.
    [42] Grigsby C O.Comparision of general purpose heat source testing with the ASNI N43.6-1997(R 1989)sealed source standard ,LA-UR-98-1826 [R]. 1998.
    [43] Snow E C. Safety test No.S-6,Launch pad abort sequential test phase II: Solid propellant fire,LA-6034-MS [R]. 1975.
    [44] Boris G,Oglobin,Yuriy F ,Proshin,and Anatoliy I S. Off-line life tests of Topaz‐2 system reactor unit assembly units[J]. AIP Conference Proceedings,1995,324:713-718
    [45] Grinberg E I,Doschatov V V,Usov. Thermal state of the safety system,reactor,side reflector and shielding of the “Topaz-2” system under conditions of fire caused by a launcher accident at the launch pad[J]. AIP Conference Proceedings,1996,361:981 -990
    [46] Susan S V,Edward A,Rodriguez.Russian Topaz II system test program(1970-1989)[J].AIP Conference Proceedings,1994,301:803-821
    [47] Glen L S,Boris O,Valeri S,et al.Topaz II Non-nuclear qualification test program[J]. AIP Conference Proceedings,1994,301:1185-1191
    [48] Luchau D W,Sinkevich V G,Wernsman B,et al. Final report on testing of TOPAZ II unit Ya‐21u:output power characteristics and system capabilities[J]. AIP Conference Proceedings,1996,361,1389-1395
    [49] Paramonov,Dmitry V,El-genk,Mohamed S.Analysis of ya-21u thermionic fuel elements[J]. Nuclear Technology,1996,116:261-269
    [50] Wold S K.Thermionic system evaluation test facility construction:a United States and Russian effort,SAND-92-2276C [R]. 1993.
    [51] Fairchild J F,Koonmen J P,Frank V. Thermionic system evaluation test facility description[J]. AIP conference Proceeding,1992,246:836-842
    [52] Morris D B. The thermionic system evaluation test:descriptions,limitations,and the involvement of the space nuclear power community[J]. AIP Conference Proceedings,1993,271:1251-1255.
    [53] Polansky G F,Schmidt G L,Voss S S. Evaluating Russian space nuclear reactor technology for United States applations[R]. 1994.
    [54] Paternoster R R. TOPAZ-II U.S. critical experiments program[J]. AIP conference Proceeding,1994,301,97:97-101.
    [55] Trujillo D,Darrel B,Chris P. Conceptual design of the Topaz II anticriticality device,LA-UR-93-3287 [R]. 1993.
    [56] Susan S V. An overview of the nuclear electric propulsion space test program(NEPSTP)satellite,LA-UR-94-1688 [R],1994.
    [57] Scott K W. Thermionic system evaluation test(TSET)facility construction:a United States and Russian effort,SAND-92-2276C [R]. 1992.
    [58] Jerry F F,James P K,Frank V T. Thermionic system evaluation test(TSET)facility description[J]. AIP conference Proceeding,1992,246:836-842.
    [59] The thermionic system evaluation test:descriptions,limitations,and the involvement of the space nuclear power community[J]. AIP Conference Proceedings,1993,271:1251-1255
    [60] Connell L W,Trost L C. Reentry safety for the Topaz II space reactor:issues and analysis,SAND94-0484 [R]. 1994.
    [61] U.S. approach to risk assessment and its role in implementing an effective safety program for space nuclear power sources applications[C]// Committee on the Peaceful Uses of Outer Space,Scientific and Technical Subcommittee,Vienna:[s.n.],2011.
  • [1] 夏彦, 黄文, 冯宇, 靳张涛, 欧学东, 徐靖皓, 帅智康.  基于微型核反应堆的月表高可靠可扩展配电网架设想 . 深空探测学报(中英文), 2022, 9(1): 3-13. doi: 10.15982/j.issn.2096-9287.2022.20210138
    [2] 张怡晨, 胡宇鹏, 王泽, 朱长春, 胡绍全, 李思忠.  基于AMTEC的空间核反应堆电源热力学性能分析 . 深空探测学报(中英文), 2021, 8(2): 205-212. doi: 10.15982/j.issn.2096-9287.2020.20200045
    [3] 乔学荣, 郭际, 米娟.  高比能量锂氟化碳电池在深空探测器上的应用试验研究 . 深空探测学报(中英文), 2020, 7(1): 87-92. doi: 10.15982/j.issn.2095-7777.2020.20191223001
    [4] 王文强, 杨洪东, 杨广, 王佳禹, 吴庆, 顾春杰.  太阳电池阵深空探测适应性设计概论 . 深空探测学报(中英文), 2020, 7(1): 41-46. doi: 10.15982/j.issn.2095-7777.2020.20191101003
    [5] 雷英俊, 朱立颖, 张文佳.  我国深空探测任务电源系统发展需求 . 深空探测学报(中英文), 2020, 7(1): 35-40. doi: 10.15982/j.issn.2095-7777.2020.20190712001
    [6] 牛厂磊, 罗志福, 雷英俊, 王文强, 郑见杰, 乔学荣, 罗洪义, 胡文军, 钟武烨.  深空探测先进电源技术综述 . 深空探测学报(中英文), 2020, 7(1): 24-34. doi: 10.15982/j.issn.2095-7777.2020.20200002
    [7] 柏胜强, 廖锦城, 夏绪贵, 陈立东.  同位素温差电池用高效热电转换材料与器件研究进展 . 深空探测学报(中英文), 2020, 7(6): 525-535. doi: 10.15982/j.issn.2096-9287.2020.20200062
    [8] 罗洪义, 牛厂磊, 吴胜娜, 李鑫, 唐显, 罗志福.  深空探测中的钚-238同位素电源 . 深空探测学报(中英文), 2020, 7(1): 61-72. doi: 10.15982/j.issn.2095-7777.2020.20191129001
    [9] 胡文军, 刘继忠, 唐玉华, 陈军红, 张玮, 张哲, 李上明, 胡绍全.  空间同位素热/电源安全性技术指标体系框架研究 . 深空探测学报(中英文), 2020, 7(1): 73-80. doi: 10.15982/j.issn.2095-7777.2020.20190911001
    [10] 徐赫屿, 王大轶, 刘成瑞, 李文博, 符方舟, 张科备.  深空探测器可重构性评价与自主重构策略 . 深空探测学报(中英文), 2019, 6(4): 376-383. doi: 10.15982/j.issn.2095-7777.2019.04.010
    [11] 杨涛, 邵志杰, 蔡明辉, 贾鑫禹, 韩建伟.  空间高能粒子与器件布线层核反应后次级粒子LET分布研究 . 深空探测学报(中英文), 2019, 6(2): 173-178. doi: 10.15982/j.issn.2095-7777.2019.02.009
    [12] 陈略, 平劲松, 李文潇, 韩松涛, 刘庆, 陈永强, 张建辉, 简念川.  基于中国深空站的木星探测器开环测量试验 . 深空探测学报(中英文), 2018, 5(4): 382-386. doi: 10.15982/j.issn.2095-7777.2018.04.009
    [13] 朱安文, 刘磊, 马世俊, 李明.  空间核动力在深空探测中的应用及发展综述 . 深空探测学报(中英文), 2017, 4(5): 397-404. doi: 10.15982/j.issn.2095-7777.2017.05.001
    [14] 陈略, 平劲松, 张建辉, 刘庆, 岳世磊, 陈永强, 王际舟, 李文潇.  中国深空网成功实施“卡西尼号”探测器坠入土星测量试验 . 深空探测学报(中英文), 2017, 4(5): 491-492. doi: 10.15982/j.issn.2095-7777.2017.05.012
    [15] 胡古, 赵守智.  空间核反应堆电源技术概览 . 深空探测学报(中英文), 2017, 4(5): 430-443. doi: 10.15982/j.issn.2095-7777.2017.05.004
    [16] 朱安文, 刘飞标, 杜辉, 马世俊.  核动力深空探测器现状及发展研究 . 深空探测学报(中英文), 2017, 4(5): 405-416. doi: 10.15982/j.issn.2095-7777.2017.05.002
    [17] 鲁亮, 胡宇鹏, 欧阳智江, 向延华, 黄含军, 李思忠.  同位素热源高温-冲击复合环境试验 . 深空探测学报(中英文), 2017, 4(5): 466-470. doi: 10.15982/j.issn.2095-7777.2017.05.007
    [18] 胡宇鹏, 鲁亮, 向延华, 李思忠, 胡文军, 胡绍全.  深空探测器同位素热源环境试验技术 . 深空探测学报(中英文), 2017, 4(2): 138-142. doi: 10.15982/j.issn.2095-7777.2017.02.006
    [19] 沈自才, 代巍, 白羽, 刘荣强, 丁义刚, 刘业楠.  载人深空探测任务的空间环境工程关键问题 . 深空探测学报(中英文), 2016, 3(2): 99-107. doi: 10.15982/j.issn.2095-7777.2016.02.001
    [20] 周继时, 朱安文, 耿言.  空间核能源应用的安全性设计、分析和评价 . 深空探测学报(中英文), 2015, 2(4): 302-312. doi: 10.15982/j.issn.2095-7777.2015.04.002
  • 加载中
计量
  • 文章访问数:  2245
  • HTML全文浏览量:  35
  • PDF下载量:  1262
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-11
  • 修回日期:  2017-04-28
  • 刊出日期:  2017-10-01

空间核动力源的安全性研究进展

doi: 10.15982/j.issn.2095-7777.2017.05.006

摘要: 

同位素热/电源以及空间核反应堆在深空探测任务中有重要应用。通过调研其技术特点以及国际上针对核能空间应用安全性的相关规范,研究了其空间安全性规范的法律法规。以ALRH(Apollo Lunar Radiosotope Heater,阿波罗月球任务同位素热源)、GPHS(General Purpose Heater Source,通用型热源)、LWRHU(Lighted Weighted Radiosotope Heater Unit,轻量放射性同位素热源)、MMRTG(Multi-Mission Radioisotope Thermoelectric Generator,多任务型放射性同位素电源)等同位素热/电源及俄罗斯热离子空间反应堆电源(TOPAZ-II型号)为例,结合美俄开展的同位素热/电源的系列安全性试验,重点关注了不同型号的试验及分析技术细节,并分析了同位素热/电源的空间应用安全评价方法,可为开展相关研发提供技术参考。

English Abstract

胡文军, 陈红永, 陈军红, 李上明, 胡绍全, 唐玉华. 空间核动力源的安全性研究进展[J]. 深空探测学报(中英文), 2017, 4(5): 453-465. doi: 10.15982/j.issn.2095-7777.2017.05.006
引用本文: 胡文军, 陈红永, 陈军红, 李上明, 胡绍全, 唐玉华. 空间核动力源的安全性研究进展[J]. 深空探测学报(中英文), 2017, 4(5): 453-465. doi: 10.15982/j.issn.2095-7777.2017.05.006
HU Wenjun, CHEN Hongyong, CHEN Junhong, LI Shangming, HU Shaoquan, TANG yuhua. Advances of Safety Research on Nuclear Space Power Sources[J]. Journal of Deep Space Exploration, 2017, 4(5): 453-465. doi: 10.15982/j.issn.2095-7777.2017.05.006
Citation: HU Wenjun, CHEN Hongyong, CHEN Junhong, LI Shangming, HU Shaoquan, TANG yuhua. Advances of Safety Research on Nuclear Space Power Sources[J]. Journal of Deep Space Exploration, 2017, 4(5): 453-465. doi: 10.15982/j.issn.2095-7777.2017.05.006
参考文献 (61)

目录

    /

    返回文章
    返回
    Baidu
    map