中文核心期刊

中国科技核心期刊

中国科学引文数据库(CSCD)来源期刊

中国高校百佳科技期刊

中国宇航学会深空探测技术专业委员会会刊

高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航天器用可变发射率热控器件的研究进展

金海波,凌晨,李静波

downloadPDF
金海波, 凌晨, 李静波. 航天器用可变发射率热控器件的研究进展[J]. 深空探测学报(中英文), 2018, 5(2): 188-200. doi: 10.15982/j.issn.2095-7777.2018.02.012
引用本文: 金海波, 凌晨, 李静波. 航天器用可变发射率热控器件的研究进展[J]. 深空探测学报(中英文), 2018, 5(2): 188-200.doi:10.15982/j.issn.2095-7777.2018.02.012
JIN Haibo, LING Chen, LI Jingbo. Development of Variable-Emittance Thermal Control Technology[J]. Journal of Deep Space Exploration, 2018, 5(2): 188-200. doi: 10.15982/j.issn.2095-7777.2018.02.012
Citation: JIN Haibo, LING Chen, LI Jingbo. Development of Variable-Emittance Thermal Control Technology[J].Journal of Deep Space Exploration, 2018, 5(2): 188-200.doi:10.15982/j.issn.2095-7777.2018.02.012

航天器用可变发射率热控器件的研究进展

doi:10.15982/j.issn.2095-7777.2018.02.012
基金项目:国家自然科学基金资助项目(51572027)

Development of Variable-Emittance Thermal Control Technology

  • 摘要:随着航天技术的发展,卫星的微型化对热控技术提出了挑战。可变发射率热控器件作为一种重要的航天器热控技术,对于航天器减小负载和体积,适应复杂多变的空间热环境具有重要的意义。基于热致变色技术的智能可变发射率热控器件可以根据环境温度实现智能热控,其结构简单,能最大限度地减小热控系统的体积和质量,是一种非常有潜力的航天器热控技术。概述了主动型和被动型两类可变发射率热控器件的基本原理和进展,并对钒氧化物基热致变色可变发射率热控器件的研究进展、存在问题予以了重点介绍,展望了未来航天器用可变发射率热控器件的发展趋势。
  • [1] DEMIRYONT H,SHANNON Ⅲ K,PONNAPPAN R. Electrochromic devices for satellite thermal control[C]//Space Tech.&Applic. Int. Forum-staif 2006.[S.l]:AIP,2006.
    [2] DAVID G G. Spacecraft thermal control handbook volume I:fundamental technologies[J]. Mechanical Engineering,2002(5):68.
    [3] DONABEDIAN M. Spacecraft thermal control handbook,volume Ⅱ:cryogenics[M]. El Segundo,California:The Aerospace Press,2002.
    [4] 范含林. 航天器热控材料的应用和发展[C]//航天材料及工艺研究所建所50周年科技论坛暨先进功能复合材料技术学术交流会、中国宇航学会材料工艺专业委员会2007年学术研讨会. 北京:中国宇航学会,2007. FAN H L. Spacecraft thermal control materials[C]//The 50th Anniversary of the Institute of Aerospace Materials and Technology,BBS and Advanced Functional Composite Materials Technology Academic Exchange Meeting,China Aerospace Society Material Craft Professional Committee 2007 Academic Seminar. Beijing:Chinese Society of Astronautics,2007.
    [5] 曹生珠,陈学康,吴敢,等. 航天器用可变发射率热控器件[C]//空间材料及其应用技术学术交流会. 北京:中国空间技术研究院,2011. CAO S Z,CHEN X K,WU G,et al. Spacecraft variable emittance thermal control devices[C]//Proceedings of the Space Materials and Applied Technology Academic Exchange. Beijing:China Academy of Space Technology,2011.
    [6] 刘东青,程海峰,郑文伟,等. 红外发射率可变材料在航天器热控技术中的应用[J]. 国防科技大学学报,2012,34(2):145-149. LIU D Q,CHENG H F,ZHENG W W,et al. Application of variable infrared-emissivity materials to spacecraft thermal control[J]. Journal of National University of Defense Technology,2012,34(2):145-149.
    [7] DOUGLAS D M,SWANSON T,OSIANDER R,et al. Development of the variable emittance thermal suite for the space technology 5 microsatellite[C]//AIP Conference Proceedings. Albuquerque,New Mexico:AIP,2002,608(1):204-210.
    [8] 郭宁. 可变发射率热控器件的研究进展[J]. 真空与低温,2003,9(4):187-190. GUO N. The development of the variable emittance thermal suite[J]. Vacuum & Cryogenics,2003,9(4):187-190.
    [9] 潘增富. 微小卫星热控关键技术研究[J]. 航天器工程,2007,16(2):16-21. PAN Z F. Study on key thermal control technology for micro-satellite[J]. Spacecraft Engineering,2007,16(2):16-21.
    [10] PATTON S T,COWAN W D,ZABINSKI J S. Performance and reliability of a new MEMS electrostatic lateral output motor[C]//Reliability Physics Symposium Proceedings,1999. 37th Annual. 1999 IEEE International. San Diego,CA,USA:IEEE,1999:179-188.
    [11] OSIANDER R,FIREBAUGH S L,CHAMPION J L,et al. Micro electromechanical devices for satellite thermal control[J]. IEEE Sensors Journal,2004,4(4):525-531.
    [12] OSIANDER R,CHAMPION J,DARRIN M,et al. Micro-machined shutter arrays for thermal control radiators on ST5[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Maryland:AIAA,2002:359.
    [13] GARRISON D A,OSIANDER A R,CHAMPION J,et al. Variable emissivity through MEMS technology[C]//Thermal and Thermomechanical Phenomena in Electronic Systems,2000. ITHERM 2000. The Seventh Intersociety Conference on. Las Vegas:IEEE,2000(1):264-270.
    [14] FARRAR D,DOUGLAS D M,SWANSON T,et al. MEMS shutters for thermal control-flight validation and lessons learned[C]//AIP Conference Proceedings. Albuquerque:AIP,2007,880(1):73-80.
    [15] CAO S,CHEN X,WU G,et al. Study on design and fabrication of micro thermal control louvers[J]. Rare Metal Materials and Engineering,2011,394(40):249-251.
    [16] UENO A,SUZUKI Y. Parylene-based active micro space radiator with thermal contact switch[J]. Applied Physics Letters,2014,104(9):093511.
    [17] MOGHADDAM S,LAWLER J,CURRANO J,et al. Novel method for measurement of total hemispherical emissivity[J]. Journal of Thermophysics and Heat Transfer,2007,21(1):128-133.
    [18] MOGHADDAM S,LAWLER J,CURRANO J,et al. A space-based experiment to evaluate performance of electrostatic switched radiator(ESR)[J]. 2007(880):66-72.
    [19] CURRANO J,MOGHADDAM S,LAWLER J,et al. Performance analysis of an electrostatic switched radiator using heat-flux-based emissivity measurement[J]. Journal of Thermophysics and Heat Transfer,2008,22(3):360-365.
    [20] BITER W,OH S,HESS S. Electrostatic switched radiator for space based thermal control[J]. 2002,608(8):73-80.
    [21] BITER W,OH S. Performance results of the ESR from the space technology 5 satellites[J]. AIP Conference Proceedings,2007,880(1):59-65.
    [22] BITER W,HESS S,OH S. Development status of electrostatic switched radiator[C]//AIP Conference Proceedings. Albuquerque:AIP,2006,813(1):56-63.
    [23] BITER W,HESS S,OH S. Electrostatic radiator for spacecraft temperature control[C]//AIP Conference Proceedings. Albuquerque:AIP,2004,699(1):96-102.
    [24] BITER W,HESS S,OH S. Electrostatic appliqué for spacecraft temperature control[C]//AIP Conference Proceedings. Albuquerque:AIP,2003,654(1):162-171.
    [25] BEASLEY M A,FIREBAUGH S L,EDWARDS R L,et al. Microfabricated thermal switches for emittance control[C]//AIP Conference Proceedings. Albuquerque:AIP,2004,699(1):119-125.
    [26] ZHOU D,XIE D,XIA X,et al. All-solid-state electrochromic devices based on WO3||NiO films:material developments and future applications[J]. Science China Chemistry,2016,60(1):3-12.
    [27] PLATT J R. Electrochromism,a possible change of color producible in dyes by an electric field[J]. The Journal of Chemical Physics,1961,34(3):862-863
    [28] KOO B R,AHN H J. Fast-switching electrochromic properties of mesoporous WO3films with oxygen vacancy defects[J]. Nanoscale,2017,9(45):17788-17793.
    [29] KANU S S,BINIONS R. Thin films for solar control applications[J]. Proceedings of the Royal Society A:Mathematical,Physical and Engineering Sciences,2009,466(2113):19-44.
    [30] DEB S K. A novel electrophotographic system[J]. Applied Optics,1969,8(101):192-195.
    [31] ZHANG H,MI M,MIAO J,et al. Development and on-orbit operation of loop heat pipes on Chinese circumlunar return and reentry spacecraft[J]. Journal of Mechanical Science and Technology,2017,31(6):2597-2605.
    [32] SWANSON T D,BIRUR G C. NASA thermal control technologies for robotic spacecraft[J]. Applied Thermal Engineering,2003,23(9):1055-1065.
    [33] REAY D A. Heat pipes[J]. Physics in Technology,2002,3(19):311-319.
    [34] REAY D,HARVEY A. The role of heat pipes in intensified unit operations[J]. Applied Thermal Engineering,2013,57(1-2):147-153.
    [35] HOU Z Q,HUA C S,GUO S,et al. Performance investigation and application of grooved heat pipes[C]//American Institute of Aeronautics and Astronautics,Thermophysics Conference 14th. Orlando,Florida,1979.
    [36] RAJESWARAN B,PRADHAN J K,ANANTHA RAMAKRISHNA S,et al. Thermochromic VO2thin films on ITO-coated glass substrates for broadband high absorption at infra-red frequencies[J]. Journal of Applied Physics,2017,122(16):163107.
    [37] ZHANG J,JIN H,CHEN Z,et al. Self-Assembling VO2nanonet with high switching performance at wafer-scale[J]. Chemistry of Materials,2015,27(21):7419-7424.
    [38] GUO D,ZHAO Z,LI J,et al. Symmetric confined growth of superstructured vanadium dioxide nanonet with a regular geometrical pattern by a solution approach[J]. Crystal Growth & Design,2017,17(11):5838-5844.
    [39] ZHANG J,ZHAO Z,LI J,et al. Evolution of structural and electrical properties of oxygen-deficient VO2under low temperature heating process[J]. ACS Appl. Mater Interfaces,2017,9(32):27135-27141.
    [40] ZHANG J,LI J,CHEN P,et al. Hydrothermal growth of VO2nanoplate thermochromic films on glass with high visible transmittance[J]. Scientific Reports,2016(6):27898.
    [41] HENGEVELD D,MATHISON M,BRAUN J,et al. Review of modern spacecraft thermal control technologies[J]. HVAC&R Research,2010,16(2):189-220.
    [42] SUNADA E,LANKFORD K,PAUKEN M,et al. Wax-actuated heat switch for Mars surface applications[C]//AIP Conference Proceedings. Albuquerque:AIP,2002,608(1):211-213.
    [43] NAGANO H,NAGASAKA Y,OHNISHI A. Development of a flexible thermal control device with high-thermal-conductivity graphite sheets[R].[s.l]:SAE Technical Paper,2003.
    [44] NAGANO H,NAGASAKA Y,OHNISHI A. Simple deployable radiator with autonomous thermal control function[J]. Journal of Thermophysics & Heat Transfer,2006,20(20):856-864.
    [45] NAGANO H,OHNISHI A,HIGUCHI K,et al. Experimental investigation of a passive deployable/stowable radiator[J]. Journal of Spacecraft and Rockets,2009,46(1):185-190.
    [46] 闵桂荣. 航天器热控制[M]. 北京:科学出版社,1998. MIN G R. Spacecraft thermal control[M]. Beijing:Science Press,1998.
    [47] 侯增祺,闵桂荣. 浅析航天器热控技术的预先研究及其应用研究[J]. 航天器工程,2004,13(2):1-9. HOU Z Q,MIN G R. Preliminary study on spacecraft thermal control technology and its application[J]. Spacecraft Engineering,2004,13(2):1-9.
    [48] KIM T,HAN S-H,OH H-U. Design and performance evaluation of MEMS-Based spaceborne variable emissivity radiator using movement of electrified beads[J]. Journal of Microelectromechanical Systems,2017,26(1):113-119.
    [49] CARPENTER M K,CONELL R S,CORRIGAN D A. The electrochromic properties of hydrous nickel oxide[J]. Solar Energy Materials,1987,16(4):333-346.
    [50] DEMIRYONT H,SHANNON Ⅲ K C. Variable emittance electrochromic devices for satellite thermal control[C]//AIP Conference Proceedings. Albuquerque:AIP,2007,880(1):51-58.
    [51] DEMIRYONT H,SHANNON K,WILLIAMS A. Emissivity modulating electro-chromic device[C]//Thermosense XXX. Orlando:International Society for Optics and Photonics,2008.
    [52] CHANDRASEKHAR P,ZAY B J,MCQUEENEY T,et al. Variable emittance materials based on conducting polymers for spacecraft thermal control[C]//AIP Conference Proceedings. Albuquerque:AIP,2003,654(1):157-161.
    [53] 何延春,邱家稳. 直流磁控溅射沉积WO3薄膜电致变色性能研究[J]. 真空与低温,2007,13(1):16-20. HE Y C,QIU J W. The Electrochromic properties of WO3thin films by DC magentron sputtering[J]. Vacuum & Cryogenics,2007,13(1):16-20.
    [54] CAMIRAND H,BALOUKAS B,KLEMBERG-SAPIEHA J E,et al. In situ spectroscopic ellipsometry of electrochromic amorphous tungsten oxide films[J]. Solar Energy Materials and Solar Cells,2015(140):77-85.
    [55] BO G,WANG X,WANG K,et al. Preparation and electrochromic performance of NiO/TiO2nanorod composite film[J]. Journal of Alloys and Compounds,2017(728):878-886.
    [56] BUGBY D,MARLAND B,STOUFFER C,et al. Across-gimbal and miniaturized cryogenic loop heat pipes[C]//AIP Conference Proceedings. Albuquerque:AIP,2003,654(1):218-226.
    [57] BUGBY D C,KROLICZEK E J,YUN J S. Development and testing of a miniaturized multi-evaporator hybrid loop heat pipe[C]//AIP Conference Proceedings. Albuquerque:AIP,2005,746(1):69-81.
    [58] BUGBY D,WRENN K,WOLF D,et al. Multi-evaporator hybrid loop heat pipe for small spacecraft thermal management[C]//Aerospace Conference,2005 IEEE. Montana:IEEE,2005:810-823.
    [59] DUTRA T,RIEHL R R. Loop heat pipe:design and performance during operation[C]//AIP Conference Proceedings. Albuquerque:AIP,2004,699(1):51-58.
    [60] BAKER C L,GROB E W,MCCARTHY T V,et al. Geoscience laser altimetry system(GLAS)on-orbit flight report on the猠異扲㹯孰䩹嵬⹥健栠祬獯楯捰愠汨⁥䍡桴攠浰楩獰瑥牳礨⁌䍈桐敳洩楛捃慝氯 偁桉祐猠楃捯獮ⱦ㉥ひㅥ㕮Ᵽㅥ㜠⡐ㅲ㝯⥣㩥ㅥㅤ㙩㍮㡧⵳ㄮㄠ㙁㑬㙢⹵㱱扵牥㹲孱ㅵㅥ㈺嵁⁉剐䔬串‰儰ⰴ圬䄶丹‹䨨ⰱ䜩䄺伸‸夭⸹‵吮格敢潲爾敛琶椱捝愠氘⁳猬瑎痐擽礬‸潙昬⁉攮氠斮挏瑫爟濭溧槻揟₄瀔牶澰炶旊狑瑕榋斿獛⁊潝昮†堪⴩䑨澯炃日搋‬⠲堰㴱䘱Ⱜ䌲永Ⱘ䈱爩ⰺ䤷⤷‭嘸伲㰮猠界扉㹕㈠㱊⼬獌畉戠㹙†湚愬湃潈灁慎片琠楊挬汥整猠⁡晬漮爠⁒瑥桳敥牡浲潣捨栠牳潴浡楴捵⁳攠湡敮牤朠祤ⵥ獶慥癬楯湰杭⁥普潴椠汴獲孥䩮嵤⸠呦栠敭⁩䩣潲畯爠湳慡汴⁥潬晬⁩側桥礠獴楨捥慲汭⁡䍬栠散浯楮獴瑲牯祬†䅳ⱹ㉳ぴㅥ㑭ⱛㅊㅝ㠮⠠㑓㙰⥡㩣ㅥㅣㅲㅡ㑦⵴ㄠㅅㅮㅶ㡩⹲㱯扮牭㹥孮ㅴㄠ㍅嵮⁧坩䅮乥⁥䩲Ⱪ剮䕧丬′儰ⰱ圱唬′丸Ⱘ攱琩›愷氷⸭‸䐲攮渼獢楲琾祛‶昲畝渠捁瑁楒潏湎愠汋‮瑓桰敡潣牥祣⁲獡瑦畴搠祴⁨潥晲䵡⵬搠潣灯敮摴⁲⡯䵬㴠䉨ⱡ䍮Ɽ乢Ɐ䵯杫Ⱜ䅶汯⥬⁵噭佥㰠猱町扦㹵㉮㱤⽡獭略扮㹴⁡湬愠湴潥灣慨牮瑯楬捯汧敩獥⁳晛潍牝‮琠桅敬爠浓潥捧桵牮潤浯椺捔⁨敥渠敁牥杲祯⵳獰慡癣楥渠材⁲晥潳楳氬猲嬰䨰崲⸮‼䩢潲甾牛渶愳汝†潍晁⁒䅌汁汎潄礠獂‬慂湕摇⁂䍙漠浄瀬潓畔湏摕獆ⱆ㉅げㄠ㙃⠮㘠㙄㉥⥶㩥㙬㉯ㅰ⵭㙥㉮㝴⸠⁡nd testing of advanced cryogenic thermal switch concepts[C]//AIP Conference Proceedings. Albuquerque:AIP,2000,504(1):837-846.
    [61] HAFER W,VITALE N,MACRIS C,et al. Design of a variable thermal layer (VTL) for a generic satellite component interface[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics,and Materials Conference,16th AIAA/ASME/AHS Adaptive Structures Conference,10th AIAA Non-Deterministic Approaches Conference,9th AIAA Gossamer Spacecraft Forum,4th AIAA Multidisciplinary Design Optimization Specialists Conference. Illinois:AIAA,2008:2259.
    [62] GONG J,CHA G,JU Y S. Thermal switches based on coplanar EWOD for satellite thermal control[C]//Micro Electro Mechanical Systems,2008. MEMS 2008. IEEE 21st International Conference on. Arizona:IEEE,2008:848-851.
    [63] PICKETT W E,SINGH D J. Electronic structure and half-metallic transport in the La1-xCaxMnO3system[J]. Phys Rev B Condens Matter,1996,53(3):1146-1160.
    [64] JONKER G H. Semiconducting properties of mixed crystals with perovskite structure[J]. Physica,1954,20(7-12):1118-1122.
    [65] JONKER G H,SANTEN J H V. Ferromagnetic compounds of manganese with perovskite structure[J]. Physica,1950,16(3):337-349.
    [66] JONKER G H,SANTEN J H V. Magnetic compounds wtth perovskite structure Ⅲ. ferromagnetic compounds of cobalt[J]. Physica,1953,19(1):120-130.
    [67] SHIMAKAWA Y,YOSHITAKE T,KUBO Y,et al. A variable-emittance radiator based on a metal-insulator transition of(La,Sr)MnO3thin films[J]. Applied Physics Letters,2002,80(25):4864-4866.
    [68] TANG G,YU Y,CAO Y,et al. The thermochromic properties of La1-xSrxMnO3compounds[J]. Solar Energy Materials and Solar Cells,2008,92(10):1298-1301.
    [69] SHEN X,XU G,SHAO C,et al. Temperature dependence of infrared emissivity of doped manganese oxides in different wavebands (3-5 and 8-14μm)[J]. Journal of Alloys and Compounds,2009,479(1-2):420-422.
    [70] SHEN X,XU G,SHAO C. The effect of B site doping on infrared emissivity of lanthanum manganites La0.8Sr0.2Mn1-xBxO3(B=Ti or Cu)[J]. Journal of Alloys and Compounds,2010,499(2):212-214.
    [71] SHIMAZAKI K,TACHIKAWA S,OHNISHI A,et al. Radiative and optical properties of La1-xSrxMnO3(0≤ x ≤ 0.4) in the vicinity of metal-insulator transition temperatures from 173 to 413K[J]. International Journal of Thermophysics,2001,22(5):1549-1561.
    [72] TACHIKAWA S,OHNISHI A,SHIMAKAWA Y,et al. Development of a variable emittance radiator based on a perovskite manganese oxide[J]. Journal of Thermophysics and Heat Transfer,2003,17(2):264-268.
    [73] FAN D,LI Q,DAI P. Temperature-dependent emissivity property in La0.7Sr0.3MnO3films[J]. Acta Astronautica,2016(121):144-152.
    [74] LU T,FAN D,LI Q,et al. Nanometer thick thermochromic film based on K-doped manganite oxide prepared by magnetron sputtering[J]. Journal of Alloys and Compounds,2017(704):366-372.
    [75] SHIOTA T,MORI Y,SUGIYAMA J,et al. Preparation of (La1-xSrx)MnO3-δthin films on Si (100) substrates by a metal-organic decomposition method for smart radiation devices[J]. Thin Solid Films,2017(626):154-158.
    [76] MORIN F J. Oxides which show a metal-to-insulator transition at the neel temperature[J]. Physical Review Letters,1959,3(1):34-36.
    [77] CAVALLERI A,DEKORSY T,CHONG H H W,et al. Evidence for a structurally-driven insulator-to-metal transition inVO2:A view from the ultrafast timescale[J]. Physical Review B,2004,70(16):161102.
    [78] ZHANG Z,GAO Y,CHEN Z,et al. Thermochromic VO2thin films:solution-based processing,improved optical properties,and lowered phase transformation temperature[J]. Langmuir,2010,26(13):10738-10744.
    [79] GUINNETON F,SAUQUES L,VALMALETTE J C. Role of surface defects and microstructure in infrared optical properties of thermochromic VO2materials[J]. Journal of Physics & Chemistry of Solids,2005,66(1):63-73.
    [80] BENKAHOUL M,CHAKER M,MARGOT J,et al. Thermochromic VO2film deposited on Al with tunable thermal emissivity for space applications[J]. Solar Energy Materials & Solar Cells,2011,95(12):3504-3508.
    [81] HENDAOUI A,ÉMOND N,CHAKER M,et al. Highly tunable-emittance radiator based on semiconductor-metal transition of VO2thin films[J]. Applied Physics Letters,2013,102(6):061107.
    [82] HENDAOUI A,ÉMOND N,DORVAL S,et al. VO2-based smart coatings with improved emittance-switching properties for an energy-efficient near room-temperature thermal control of spacecrafts[J]. Solar Energy Materials and Solar Cells,2013(117):494-498.
    [83] HENDAOUI A,ÉMOND N,DORVAL S,et al. Enhancement of the positive emittance-switching performance of thermochromic VO2films deposited on Al substrate for an efficient passive thermal control of spacecrafts[J]. Current Applied Physics,2013,13(5):875-879.
    [84] TAYLOR S,YANG Y,WANG L. Vanadium dioxide based Fabry-Perot emitter for dynamic radiative cooling applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2017(197):76-83.
    [85] KRUZELECKY R V,HADDAD E,WONG B,et al. Variable emittance thermochromic material and satellite system:U.S. Patent 7,761,053[P]. USA:[s.n],2010.
    [86] BENKAHOUL M,HADDAD E,KRUZELECKY R,et al. Multilayer tuneable emittance coatings,with higher emittance for improved smart thermal control in space applications[C]//40th International Conference on Environmental Systems.[S.l]:AIAA,2010.
    [87] JIANG X,SOLTANI M,HADDAD E,et al. Effects of atomic oxygen on the thermochromic characteristics of VO2coating[J]. Journal of Spacecraft and Rockets,2006,43(3):497-500.
    [88] VOTI R L,LARCIPRETE M C,LEAHU G,et al. Optimization of thermochromic VO2based structures with tunable thermal emissivity[J]. Journal of Applied Physics,2012,112(3):1750-1466.
    [89] FENG Y D,WANG Z M,MA Y L,et al. Thin film design for advanced thermochromic smart radiator devices[J]. Chinese Physics,2007,16(6):1704-1709.
    [90] 闫璐,王孝,曹韫真,等. 基于二氧化钒的辐射率可调涂层设计[J]. 宇航材料工艺,2016,46(3):22-26. YAN L,WANG X,CAO Y Z,et al. Structure design of V02-based multilayer structure with tunable emittance[J]. Aerospace Materials and Technology,2016,46(3):22-26.
    [91] WANG X,CAO Y,ZHANG Y,et al. Fabrication of VO2-based multilayer structure with variable emittance[J]. Applied Surface Science,2015(344):230-235.
    [92] RATHI S,LEE I-Y,PARK J-H,et al. Postfabrication annealing effects on insulator-metal transitions in VO2 Thin-film devices[J]. ACS applied materials & interfaces,2014,6(22):19718-19725.
    [93] CASE F C. Modifications in the phase transition properties of predeposited VO2 films[J]. Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,1984,2(4):1509-1512.
    [94] CHANG T,CAO X,DEDON L R,et al. Optical design and stability study for ultrahigh-performance and long-lived vanadium dioxide-based thermochromic coatings[J]. Nano Energy,2018(44):256-264.
    [95] FAN L,CHEN S,WU Y,et al. Growth and phase transition characteristics of pure M-phase VO2epitaxial film prepared by oxide molecular beam epitaxy[J]. Applied Physics Letters,2013,103(13):131914.
    [96] PAN M,ZHONG H,WANG S,et al. Properties of VO2thin film prepared with precursor VO(ACAC)2[J]. Journal of Crystal Growth,2004,265(1-2):121-126.
    [97] GRAF D,SCHLÄFER J,GARBE S,et al. Interdependence of structure,morphology,and phase transitions in CVD grown VO2and V2O3nanostructures[J]. Chemistry of Materials,2017,29(14):5877-5885.
    [98] PARTLOW D,GURKOVICH S,RADFORD K,et al. Switchable vanadium oxide films by a sol-gel process[J]. Journal of Applied Physics,1991,70(1):443-452.
    [99] DOU Y K,LI J B,CAO M S,et al. Oxidizing annealing effects on VO2 films with different microstructures[J]. Applied Surface Science,2015(345):232-237.
    [100] JEONG J,AETUKURI N,GRAF T,et al. Suppression of metal-insulator transition in VO2by electric field-induced oxygen vacancy formation[J]. Science,2013,339(6126):1402-1405.
    [101] NAKANO M,SHIBUYA K,OGAWA N,et al. Infrared-sensitive electrochromic device based on VO2[J]. Applied Physics Letters,2013,103(15):153503.
    [102] WU T-L,WHITTAKER L,BANERJEE S,et al. Temperature and voltage driven tunable metal-insulator transition in individual WxV1-xO2nanowires[J]. Physical Review B,2011,83(7):073101.
    [103] ZHANG R,JIN H B,GUO D,et al. The role of Fe dopants in phase stability and electric switching properties of Fe-doped VO2[J]. Ceramics International,2016,42(16):18764-18770.
    [104] JIN P,NAKAO S,TANEMURA S. Tungsten doping into vanadium dioxide thermochromic films by high-energy ion implantation and thermal annealing[J]. Thin Solid Films,1998,324(1):151-158.
    [105] PAN G,YIN J,JI K,et al. Synthesis and thermochromic property studies on W doped VO2films fabricated by sol-gel method[J]. Scientific Reports,2017,7(1):6132.
    [106] MAI L,HU B,HU T,et al. Electrical property of mo-doped VO2nanowire array film by melting-quenching sol-gel method[J]. The Journal of Physical Chemistry B,2006,110(39):19083-19086.
    [107] QUESADA-CABRERA R,POWELL M J,MARCHAND P,et al. Scalable production of thermochromic Nb-Doped VO2nanomaterials using continuous hydrothermal flow synthesis[J]. Journal of Nanoscience and Nanotechnology,2016,16(9):10104-10111.
    [108] HE X,ZENG Y,XU X,et al. Orbital change manipulation metal-insulator transition temperature in W-doped VO2
  • [1] 张顺波, 任红宇, 靳春帅, 刘伟栋, 李春晖, 李勇.火星环绕器高增益天线在轨热设计及波束指向影响分析. 深空探测学报(中英文), 2023, 10(1): 44-51.doi:10.15982/j.issn.2096-9287.2023.20210089
    [2] 张玉花, 杨金, 盛松, 印兴峰, 徐亮.“天问一号”火星环绕器推进管路热控设计与分析. 深空探测学报(中英文), 2023, 10(1): 37-43.doi:10.15982/j.issn.2096-9287.2023.20210086
    [3] 谢浩然, 詹亚锋, 王晓伟, 陈曦.卫星通导一体化技术及其在探月中的应用. 深空探测学报(中英文), 2021, 8(2): 154-162.doi:10.15982/j.issn.2096-9287.2021.20200087
    [4] 于登云, 邱家稳, 向艳超.深空极端热环境下热控材料研究现状与发展趋势. 深空探测学报(中英文), 2021, 8(5): 447-453.doi:10.15982/j.issn.2096-9287.2021.20210042
    [5] 胡文军, 刘继忠, 唐玉华, 陈军红, 张玮, 张哲, 李上明, 胡绍全.空间同位素热/电源安全性技术指标体系框架研究. 深空探测学报(中英文), 2020, 7(1): 73-80.doi:10.15982/j.issn.2095-7777.2020.20190911001
    [6] 钟武烨, 赵守智, 郑剑平, 吕征, 解家春.空间热离子能量转换技术发展综述. 深空探测学报(中英文), 2020, 7(1): 47-60.doi:10.15982/j.issn.2095-7777.2020.20200114001
    [7] 欧阳琦, 牛东文.“龙江2号”月球轨道微卫星定轨分析. 深空探测学报(中英文), 2019, 6(3): 254-260.doi:10.15982/j.issn.2095-7777.2019.03.009
    [8] 张立华, 吴伟仁.月球中继通信卫星系统发展综述与展望. 深空探测学报(中英文), 2018, 5(6): 497-505,568.doi:10.15982/j.issn.2095-7777.2018.06.001
    [9] 刘一薇.“实践9号”卫星电推进首次在轨试验验证. 深空探测学报(中英文), 2017, 4(3): 245-251.doi:10.15982/j.issn.2095-7777.2017.03.007
    [10] 张锦绣, 陈学雷, 曹喜滨, 安军社.月球轨道编队超长波天文观测微卫星任务. 深空探测学报(中英文), 2017, 4(2): 158-165.doi:10.15982/j.issn.2095-7777.2017.02.009
    [11] 郑伟, 鄢建国, 李钊伟.深空卫星重力测量计划研究综述. 深空探测学报(中英文), 2017, 4(1): 3-13.doi:10.15982/j.issn.2095-7777.2017.01.001
    [12] 赖小明, 杜志豪, 王国峰, 王国欣, 莫桂冬.月壤取芯钻具热特性有限元分析. 深空探测学报(中英文), 2017, 4(6): 544-551.doi:10.15982/j.issn.2095-7777.2017.06.007
    [13] 解家春, 霍红磊, 苏著亭, 赵泽昊.核热推进技术发展综述. 深空探测学报(中英文), 2017, 4(5): 417-429.doi:10.15982/j.issn.2095-7777.2017.05.003
    [14] 何芸, 刘祺, 田伟, 段会宗, 叶贤基, 范淑华, 李语强.地月第二拉格朗日点卫星激光测距技术研究. 深空探测学报(中英文), 2017, 4(2): 130-137.doi:10.15982/j.issn.2095-7777.2017.02.005
    [15] 柳翠翠, 葛东明, 邓润然, 邹元杰, 史纪鑫.星载大型反射面天线的刚-柔-姿控一体化在轨振动分析方法. 深空探测学报(中英文), 2017, 4(4): 355-360.doi:10.15982/j.issn.2095-7777.2017.04.007
    [16] 陈雪, 王文, 卢军, 钱子勍.基于热管散热平台的热光伏系统实验研究. 深空探测学报(中英文), 2016, 3(3): 288-292.doi:10.15982/j.issn.2095-7777.2016.03.014
    [17] 张鹏飞, 梁龙, 陶积柏, 董薇, 宫顼, 张玉生, 黎昱.深空环境下热防护材料的研究及应用进展. 深空探测学报(中英文), 2016, 3(1): 77-82.doi:10.15982/j.issn.2095-7777.2016.01.012
    [18] 赖小明, 白书欣, 赵曾, 庞勇, 殷参.模拟月面环境钻进过程热特性研究. 深空探测学报(中英文), 2016, 3(2): 162-167.doi:10.15982/j.issn.2095-7777.2016.02.011
    [19] 刘宇鑫, 尚海滨, 王帅.地球静止轨道卫星电推进位保策略研究. 深空探测学报(中英文), 2015, 2(1): 80-87.doi:10.15982/j.issn.2095-7777.2015.01.012
    [20] 黄帆, 陈昌亚.热载荷蜂窝夹层板作用下固有频率预测与分析. 深空探测学报(中英文), 2015, 2(4): 371-375.doi:10.15982/j.issn.2095-7777.2015.04.012
  • 加载中
计量
  • 文章访问数:1834
  • HTML全文浏览量:48
  • PDF下载量:1218
  • 被引次数:0
出版历程
  • 收稿日期:2018-02-05
  • 修回日期:2018-03-28
  • 刊出日期:2018-04-01

航天器用可变发射率热控器件的研究进展

doi:10.15982/j.issn.2095-7777.2018.02.012
    基金项目:国家自然科学基金资助项目(51572027)

摘要:随着航天技术的发展,卫星的微型化对热控技术提出了挑战。可变发射率热控器件作为一种重要的航天器热控技术,对于航天器减小负载和体积,适应复杂多变的空间热环境具有重要的意义。基于热致变色技术的智能可变发射率热控器件可以根据环境温度实现智能热控,其结构简单,能最大限度地减小热控系统的体积和质量,是一种非常有潜力的航天器热控技术。概述了主动型和被动型两类可变发射率热控器件的基本原理和进展,并对钒氧化物基热致变色可变发射率热控器件的研究进展、存在问题予以了重点介绍,展望了未来航天器用可变发射率热控器件的发展趋势。

English Abstract

金海波, 凌晨, 李静波. 航天器用可变发射率热控器件的研究进展[J]. 深空探测学报(中英文), 2018, 5(2): 188-200. doi: 10.15982/j.issn.2095-7777.2018.02.012
引用本文: 金海波, 凌晨, 李静波. 航天器用可变发射率热控器件的研究进展[J]. 深空探测学报(中英文), 2018, 5(2): 188-200.doi:10.15982/j.issn.2095-7777.2018.02.012
JIN Haibo, LING Chen, LI Jingbo. Development of Variable-Emittance Thermal Control Technology[J]. Journal of Deep Space Exploration, 2018, 5(2): 188-200. doi: 10.15982/j.issn.2095-7777.2018.02.012
Citation: JIN Haibo, LING Chen, LI Jingbo. Development of Variable-Emittance Thermal Control Technology[J].Journal of Deep Space Exploration, 2018, 5(2): 188-200.doi:10.15982/j.issn.2095-7777.2018.02.012
参考文献 (108)

目录

    /

      返回文章
      返回
        Baidu
        map