Welcome to Journal of Beijing Institute of Technology
Volume 28Issue 3
.
Turn off MathJax
Article Contents
Aojia Ma, Lei Zhang, Junfeng Zhao, Yahui Li, Feng Gao. Particle Swarm Optimization Applied to Some Anti-Windup Problems[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2019, 28(3): 477-490. doi: 10.15918/j.jbit1004-0579.17145
Citation: Aojia Ma, Lei Zhang, Junfeng Zhao, Yahui Li, Feng Gao. Particle Swarm Optimization Applied to Some Anti-Windup Problems[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2019, 28(3): 477-490.doi:10.15918/j.jbit1004-0579.17145

Particle Swarm Optimization Applied to Some Anti-Windup Problems

doi:10.15918/j.jbit1004-0579.17145
  • Received Date:2017-11-25
  • The particle swarm optimization (PSO) algorithm is introduced to deal with some open anti-windup problems, i.e., determining the initial condition when applying the iterative algorithm to enlarge the estimate of the domain of attraction, determining the design point in the delayed anti-windup scheme, and determining the design point and the weighting factors in the multi-stage anti-windup scheme. Therefore, the corresponding PSO-based algorithms are proposed. Unlike the traditional methods in which the free design parameters can only be selected by trial and error with the available computational results, the PSO-based algorithms provide a systematic way to determine these parameters. In addition, the algorithms are easy to be implemented and are very likely to find the desirable parameters that further improve the anti-windup closed-loop performances. Simulation results are presented to validate the effectiveness and advantages of the proposed method.
  • loading
  • [1]
    Tarbouriech S, Turner M. Anti-windup design:an overview of some recent advances and open problems[J]. IET Control Theory and Applications, 2009, 3(1):1-19.
    [2]
    Galeani S, Tarbouriech S, Turner M, et al. A tutorial on modern anti-windup design[J]. European Journal of Control, 2009, 15(3-4):418-440.
    [3]
    Tarbouriech S, Garcia G, Silva J J, et al. Stability and stabilization of linear systems with saturating actuators[M]. London:Springer Science and Business Media, 2011.
    [4]
    Kothare M V, Campo P J, Morari M, et al. A unified framework for the study of anti-windup designs[J]. Automatica, 1994, 30(12):869-1883.
    [5]
    Mulder E F, Kothare M V, Morari M. Multivariable anti-windup controller synthesis using linear matrix inequalities[J]. Automatica, 2001, 37(9):1407-1416.
    [6]
    Cao Y Y, Lin Z L, Ward D G. An anti windup approach to enlarging domain of attraction for linear systems subject to actuator saturation[J]. IEEE Transactions on Automatic Control, 2002, 47(1):40-145.
    [7]
    Sajjadi K S, Jabbari F. Modified anti-windup compensators for stable plants[J]. IEEE Transactions on Automatic Control, 2009, 54(8):1934-1939.
    [8]
    Sajjadi K S, Jabbari F. Multi-stage anti-windup compensation for open-loop stable plants[J]. IEEE Transactions on Automatic Control, 2011, 56(9):2166-2172.
    [9]
    Mulder E F, Tiwari P Y, Kothare M V. Simultaneous linear and anti-windup controller synthesis using multi objective convex optimization[J]. Automatica, 2009, 45(3):805-811.
    [10]
    Ran M P, Wang Q, Ni M L, et al. Simultaneous linear and anti-windup controller synthesis:delayed activation case[J]. Asian Journal of Control, 2015, 17(3):1027-1038.
    [11]
    Yang H J, Li X, Liu Z X, et al. Robust fuzzyscheduling control for nonlinear systems subject to actuator saturation via delta operator approach[J]. Information Sciences, 2014, 272:158-172.
    [12]
    Li Y L, Lin Z L. Design of saturation-based switching anti-windup gains for the enlargement of the domain of attraction[J]. IEEE Transactions on Automatic Control, 2013, 58(7):1810-1816.
    [13]
    Kennedy J, Eberhart R C. Particle swarm optimization[C]//Proc of 1995 IEEE International Conference on Neural Networks,1995:1942-1948.
    [14]
    Nemati K, Shamsuddin S M, Darus M. Solving initial and boundary value problems using learning automata particle swarm optimization[J]. Engineering Optimization, 2015, 47(5):656-673.
    [15]
    Gong M, Wu Y, Cai Q, et al. Discrete particle swarm optimization for high-order graph matching[J]. Information Sciences, 2016, 328(20):158-171.
    [16]
    Zhu D Q, Liu Q, Hu Z. Fault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum-behaved particle swarm optimization[J]. International Journal of Control, 2011, 84(11):1817-1829.
    [17]
    Ordnez R H, Duarte M A. Finding common quadratic Lyapunov functions for switched linear systems using particle swarm optimization[J]. International Journal of Control, 2012, 85(1):12-25.
    [18]
    Maruta I, Kim T H, Sugie T. Fixed-structure H controller synthesis:a meta-heuristic approach using simple constrained particle swarm optimization[J]. Automatica, 2009, 45(2):553-559.
    [19]
    Lari A, Khosravi A. An evolutionary approach to design practical μ synthesis controllers[J]. International Journal of Control Automation and Systems, 2013, 11(1):167-174.
    [20]
    Lin C J, Lee C Y. Nonlinear system control using a recurrent fuzzy neural network based on improved particle swarm optimization[J]. International Journal of Systems Science, 2010, 41(4):381-395.
    [21]
    Sadeghi J, Sadeghi S, Niaki S T. Optimizing a hybrid vendor-managed inventory and transportation problem with fuzzy demand:an improved particle swarm optimization algorithm[J]. Information Sciences, 2014, 272:126-144.
    [22]
    Zhan Z H, Zhang J L, Li Y, et al. Adaptive particle swarm optimization[J]. IEEE Transactions on Systems Man and Cybernetics Part B:Cybernetics, 2009, 39(6):1362-1381.
    [23]
    Li X D. Niching without niching parameters:particle swarm optimization using a ring topology[J]. IEEE Transactions on Evolutionary Computation, 2010, 14(1):150-169.
    [24]
    Shi Y H, Eberhart R C. A modified particle swarm optimizer[C]//Proc of IEEE Congress on Evolutionary Computation, 1998:63-79.
    [25]
    Silva D, Gomes J M, Tarbouriech S. Anti-windup design with guaranteed regions of stability:an LMIbased approach[J]. IEEE Transactions on Automatic Control, 2005, 50(1):106-111.
    [26]
    Del V Y, Venayagamoorthy G K, Mohagheghi S, et al. Particle swarm optimization:basic concepts, variants and applications in power systems[J]. IEEE Transactions on Evolutionary Computation, 2008, 12(2):171-195.
    [27]
    Grimm G, Postlethwaite I, Teel A R, et al. Case studies using linear matrix inequalities for optimal anti-windup synthesis[J]. European Journal of Control, 2003, 9(5):463-473.
    [28]
    Fulvio F, Sergio G. Gain scheduled, model-based anti-windup for LPV systems[J]. Automatica, 2010, 46(1):22-225.
    [29]
    Galeani S, Onori S, Zaccarian L. Nonlinear scheduled control for linear systems subject to saturation with application to anti-windup control[C]//Proc of the 46th IEEE Conference on Decision and Control, 2007:1168-1173.
    [30]
    Inthamoussou F A, Bianchi F D, Hernan D B. LPV wind turbine control wit anti-windup features covering the complete wind speed range[J]. IEEE Transactions on Energy Conversion, 2014, 29(1):259-266.
    [31]
    Wu F, Soto M. Extended anti-windup control schemes for LTI and LPV systems with actuator saturations[J]. International Journal of Robust and Nonlinear Control, 2004, 14(15):1255-1281.
    [32]
    Grimm G, Hatfield J, Postlethwaite I, et al. Antiwindup for stable linear systems with input saturation:an LMI-based synthesis[J]. IEEE Transactions on Automatic Control, 2003, 48(9):1509-1525.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (437) PDF downloads(286) Cited by()
    Proportional views
    Related

    /

      Return
      Return
        Baidu
        map