Welcome to Journal of Beijing Institute of Technology
Volume 28Issue 1
.
Turn off MathJax
Article Contents
Libao Zhu, Yongqing Li, Xi Zhu, Zixu Zhu. Out-of-Plane Compressive Behavior for UHMWPE/ Polyurethane Composites after Hygrothermal Treatment[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2019, 28(1): 176-183. doi: 10.15918/j.jbit1004-0579.17157
Citation: Libao Zhu, Yongqing Li, Xi Zhu, Zixu Zhu. Out-of-Plane Compressive Behavior for UHMWPE/ Polyurethane Composites after Hygrothermal Treatment[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2019, 28(1): 176-183.doi:10.15918/j.jbit1004-0579.17157

Out-of-Plane Compressive Behavior for UHMWPE/ Polyurethane Composites after Hygrothermal Treatment

doi:10.15918/j.jbit1004-0579.17157
  • Received Date:2017-11-10
  • Quasi-static and high strain rate compressive behaviors and failure mechanisms of hygrothermal treated ultra-high molecular weight polyethylene/polyurethane (UHMWPE/PU) composites have been studied in this paper. Firstly, the UHMWPE composites were immersed in water at 70 ℃. The out-of-plane compression test was then performed on the dry/wet state specimens at quasi-static states (0.001-0.01 s -1) and high strain rate states (800-2 400s -1). The split Hopkinson pressure bar (SHPB) was adopted in the dynamic tests and waveform shapers were used to smooth and control the incident pulse. The results show that there are two platforms for the water absorption curve of UHMWPE composites. The absorption of moisture reduces the quasi-static compressive strength of the material while initially increasing, then decreasing the dynamic compressive strength. Matrix plasticization, fiber/matrix interface degradation and void expansion are the main factors affecting the irregular change of static/dynamic compressive strength of UHMWPE composites.
  • loading
  • [1]
    O'Masta M R, Crayton D H, Deshpande V S, et al. Indentation of polyethylene laminates by a flat-bottomed cylindrical punch[J]. Composites Part A:Applied Science & Manufacturing, 2016, 80:138-147.
    [2]
    O'Masta M R, Deshpande V S, Wadley H N G. Mechanisms of projectile penetration in Dyneema ®encapsulated aluminum structures[J]. International Journal of Impact Engineering, 2014, 74:16-35.
    [3]
    Attwood J P, Khaderi S N, Karthikeyan K, et al. The out-of-plane compressive response of Dyneema ®composites[J]. Journal of the Mechanics & Physics of Solids, 2014, 70(1):200-226.
    [4]
    O'Masta M R, Deshpande V S, Wadley H N G. Defect controlled transverse compressive strength of polyethylene fiber laminates[J]. International Journal of Solids & Structures, 2015, 52:130-149.
    [5]
    Luo H, Roy S, Lu H. Dynamic compressive behavior of unidirectional IM7/5250-4 laminate after thermal oxidation[J]. Composites Science & Technology, 2012, 72(2):159-166.
    [6]
    Pankow M, Salvi A, Waas A M, et al. Split Hopkinson pressure bar testing of 3D woven composites[J]. Composites Science & Technology, 2011, 71(9):1196-1208.
    [7]
    Shi B B, Sun Y, Chen L, et al. Energy absorption of ultra-high molecular weight polyethylene fiber-reinforced laminates at high strain rates[J]. Applied Mechanics & Materials, 2010, 34-35:1532-1535.
    [8]
    Song B, Chen W, Weerasooriya T. Quasi-static and dynamic compressive behaviors of a S-2 Glass/SC15 composite[J]. Journal of Composite Materials, 2003, 37(19):1723-1743.
    [9]
    Shaker K, Jabbar A, Karahan M, et al. Study of dynamic compressive behavior of aramid and UHMWPE composites using Split Hopkinson Pressure Bar[J]. Journal of Composite Materials, 2017, 51(1):81-94.
    [10]
    Woldesenbet E, Gupta N, Vinson J R. Determination of moisture effects on impact properties of composite materials[J]. Journal of Materials Science, 2002, 37(13):2693-2698.
    [11]
    Haque A, Hossain M K. Effects of moisture and temperature on high strain rate behavior of S2-Glass-Vinyl ester woven composites[J]. Journal of Composite Materials, 2003, 37(7):627-647.
    [12]
    Wosu S N, Hui D, Daniel L. Hygrothermal effects on the dynamic compressive properties of graphite/epoxy composite material[J]. Composites Part B, 2012, 43(3):841-855.
    [13]
    Frew D J, Forrestal M J, Chen W. A split Hopkinson pressure bar technique to determine compressive stress-strain data for rock materials[J]. Experimental Mechanics, 2001, 41(1):40-46.
    [14]
    Frew D J, Forrestal M J, Chen W. Pulse shaping techniques for testing elastic-plastic materials with a split Hopkinson pressure bar[J]. Experimental Mechanics, 2005, 45(2):186-195.
    [15]
    Ravichandran G, Subhash G. Critical appraisal of limiting strain rates for compression testing of ceramics in a split hopkinson pressure bar[J]. Journal of the American Ceramic Society, 1994, 77(1):263-267.
    [16]
    Davies P, Rajapakse Y D S. Durability of composites in a marine environment[M]. Netherlands:Springer, 2013:53-78.
    [17]
    Colin X, Verdu J. Humid ageing of organic matrix composites[J]. Solid Mechanics & Its Applications, 2014, 208:47-114.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (394) PDF downloads(261) Cited by()
    Proportional views
    Related

    /

      Return
      Return
        Baidu
        map