Welcome to Journal of Beijing Institute of Technology
Volume 28Issue 3
.
Turn off MathJax
Article Contents
Haibo Ji, Lei Wang. Trajectory Tracking Strategy for Gliding Hypersonic Vehicle with Aileron Stuck at an Unknown Angle[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2019, 28(3): 447-455. doi: 10.15918/j.jbit1004-0579.17194
Citation: Haibo Ji, Lei Wang. Trajectory Tracking Strategy for Gliding Hypersonic Vehicle with Aileron Stuck at an Unknown Angle[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2019, 28(3): 447-455.doi:10.15918/j.jbit1004-0579.17194

Trajectory Tracking Strategy for Gliding Hypersonic Vehicle with Aileron Stuck at an Unknown Angle

doi:10.15918/j.jbit1004-0579.17194
  • Received Date:2017-12-18
  • A nonlinear robust trajectory tracking strategy for a gliding hypersonic vehicle with an aileron stuck at an unknown position is presented in this paper. First, the components of translational motion dynamics perpendicular to the velocity are derived, and then a guidance law based on a time-varying sliding mode method is used to realize trajectory tracking. Furthermore, the rotational equations of motion are separated into an actuated subsystem and an unactuated subsystem. And an adaptive time-varying sliding mode attitude controller is proposed based on the actuated subsystem to track the command attitude and the tracking performance and robustness are therefore enhanced. The proposed guidance law and attitude controller make the hypersonic vehicle fly along the reference trajectory even when the aileron is stuck at an unknown angle. Finally, a hypersonic benchmark platform is used to demonstrate the effectiveness of the proposed strategy.
  • loading
  • [1]
    Wang W B, Fan G C, Xu C D. Survey of the guidance and control for near-space hypersonic vehicle[J]. Tactical Missile Technology, 2015, 6:32-36.
    [2]
    Wu H X, Meng B. Review on the control of hypersonic flight vehicles[J]. Advances in Mechanics, 2009, 39(6):757-765.
    [3]
    Fiorentini L, Serrani A, Bolender M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J]. Journal of Guidance Control & Dynamics, 2009, 32(2):402-417.
    [4]
    Liu X D, Zhang Y, Wang S, et al. Backstepping attitude control for hypersonic gliding vehicle based on a robust dynamic inversion approach[J]. Proceedings of the Institution of Mechanical Engineers Part I:Journal of Systems & Control Engineering, 2014, 228(8):543-552.
    [5]
    Liu Y B, Lu Y P. Longitudinal inversion flight control based on backstepping for hypersonic vehicle[J]. Control & Decision, 2007, 22:313-317.
    [6]
    Lee H, Reiman S, Dillon C, et al. Robust nonlinear dynamic inversion control for a hypersonic cruise vehicle[C]//AIAA, Guidance, Navigation, and Control and Co-located Conferences, Kissimmee, USA, 2007:1-9.
    [7]
    Sigthorsson D, Jankovsky P, Serrani A, et al. Robust linear output feedback control of an airbreathing hypersonic vehicle[J]. Journal of Guidance, Control, and Dynamics, 2008, 31:1052-1066.
    [8]
    Xu H J, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5):829-838.
    [9]
    Zhang Y Y, Li R F, Xue T, et al. An analysis of the stability and chattering reduction of high-order sliding mode tracking control for a hypersonic vehicle[J]. Information Sciences, 2016, 348(C):25-48.
    [10]
    Song Z Y, Duan C, Su H S, et al. Full-order sliding mode control for finite-time attitude tracking of rigid spacecraft[J]. IET Control Theory & Applications, 2018, 12(8):1086-1094.
    [11]
    Wang L, Sheng Y Z, Liu X D. Continuous time-varying sliding mode based attitude control for reentry vehicle[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 229(2):197-220.
    [12]
    Ji H B, Liu X D, Song Z Y, et al. Time-varying sliding mode guidance scheme for maneuvering target interception with impact angle constraint[J]. Journal of the Franklin Institute, 2018, 355(18):9192-9208.
    [13]
    Gao Z F, Jiang B, Shi P, et al. Active fault tolerant control design for reusable launch vehicle using adaptive sliding mode technique[J]. Journal of the Franklin Institute, 2012, 349(4):1543-1560.
    [14]
    Ji Y H, Zhou H L, Zong Q. Adaptive active faulttolerant control of generic hypersonic flight vehicles[J]. Proceedings of the Institution of Mechanical Engineers Part I:Journal of Systems & Control Engineering, 2014, 229(2):130-138.
    [15]
    Van M, Ge S S, Ren H. Finite time fault tolerant control for robot manipulators using time delay estimation and continuous nonsingular fast terminal sliding mode control[J]. IEEE Transactions on Cybernetics, 2017, 47(7):1681-1693.
    [16]
    Hu Q L, Tan X, Akella M R. Finite-time fault-tolerant spacecraft attitude control with torque saturation[J]. Journal of Guidance Control & Dynamics, 2017, 40(10):2524-2537.
    [17]
    An H, Liu J X, Wang C H, et al. Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3):1680-1691.
    [18]
    Hu Q L, Shao X D, Guo L. Adaptive fault-tolerant attitude tracking control of spacecraft with prescribed performance[J]. IEEE/ASME Transactions on Mechatronics, 2017, 23(1):331-341.
    [19]
    Hu Q L, Wang C L, Li Y, et al. Adaptive Control for Hypersonic vehicles with time-varying faults[J]. IEEE Transactions on Aerospace & Electronic Systems, 2018, 54(3):1442-1455. DOI: 10.1109/TAES.2018.2793319.
    [20]
    Jiang B, Gao Z F, Shi P, et al. Adaptive fault-tolerant tracking control of near-space vehicle using Takagi-Sugeno fuzzy models[J]. IEEE Transactions on Fuzzy Systems, 2010, 18(5):1000-1007.
    [21]
    Zhai D, Xi C, Dong J, et al. Adaptive fuzzy faulttolerant tracking control of uncertain nonlinear time-varying delay systems[J]. IEEE Transactions on Systems Man & Cybernetics Systems, 2018, Article in Press, DOI: 10.1109/TSMC.2018.2789441.
    [22]
    Hu X X, Karimi H R, Wu L G, et al. Model predictive control-based non-linear fault tolerant control for air-breathing hypersonic vehicles[J]. IET Control Theory & Applications, 2014, 8(13):1147-1153.
    [23]
    Ferranti L, Wan Y, Keviczky T. Fault-tolerant reference generation for model predictive control with active diagnosis of elevator jamming faults[J]. International Journal of Robust & Nonlinear Control, 2018, DOI: 10.1002/rnc.4063.
    [24]
    Xu D Z, Jiang B, Shi P. Robust NSV Fault-tolerant control system design against actuator faults and control surface damage under actuator dynamics[J]. IEEE Transactions on Industrial Electronics, 2015, 62(9):5919-5928.
    [25]
    Wang L, Liu X D, Sheng Y Z. High-order sliding mode observer based adaptive time-varying sliding mode for re-entry attitude control[J]. Control & Decision, 2014, 29(2):281-286.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (466) PDF downloads(287) Cited by()
    Proportional views
    Related

    /

      Return
      Return
        Baidu
        map