Welcome to Journal of Beijing Institute of Technology
Volume 28Issue 3
.
Turn off MathJax
Article Contents
Jianzhong Wang, Pengzhan Liu, Jiadong Shi, Guodong Yan. Improved SLIC Segmentation Algorithm for Artificial Structure Images[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2019, 28(3): 418-427. doi: 10.15918/j.jbit1004-0579.18049
Citation: Jianzhong Wang, Pengzhan Liu, Jiadong Shi, Guodong Yan. Improved SLIC Segmentation Algorithm for Artificial Structure Images[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2019, 28(3): 418-427.doi:10.15918/j.jbit1004-0579.18049

Improved SLIC Segmentation Algorithm for Artificial Structure Images

doi:10.15918/j.jbit1004-0579.18049
  • Received Date:2018-09-11
  • Simple linear iterative cluster(SLIC) is widely used because controllable superpixel number, accurate edge covering, symmetrical production and fast speed of calculation. The main problem of the SLIC algorithm is its under-segmentation when applied to segment artificial structure images with unobvious boundaries and narrow regions. Therefore, an improved clustering segmentation algorithm to correct the segmentation results of SLIC is presented in this paper. The allocation of pixels is not only related to its own characteristic, but also to those of its surrounding pixels.Hence, it is appropriate to improve the standard SLIC through the pixels by focusing on boundaries. An improved SLIC method adheres better to the boundaries in the image is proposed, by using the first and second order difference operators as magnified factors. Experimental results demonstrate that the proposed method achieves an excellent boundary adherence for artificial structure images. The application of the proposed method is extended to images with an unobvious boundary in the Berkeley Segmentation Dataset BSDS500. In comparison with SLIC, the boundary adherence is increased obviously.
  • loading
  • [1]
    Fulkerson B, Vedaldi A, Soatto S. Class segmentation and object localization with superpixel neighborhoods[C]//International Conference on Computer Vision, IEEE, 2009:670-677.
    [2]
    Wang H, Peng X, Xiao X, et al. BSLIC:SLIC superpixels based on boundary term[J]. SYMMETRYBASEL, 2017,9(3):1-14.
    [3]
    Li Z, Wu X M, Chang S F. Segmentation using superpixels:a bipartite graph partitioning approach[C]//Conference on Computer Vision and Pattern Recognition, IEEE Computer Society, 2012:789-796.
    [4]
    Gonzalo-Martín C, Lillo-Saavedra M, Menasalvas E, et al. Local optimal scale in a hierarchical segmentation method for satellite images[J]. Journal of Intelligent Information Systems, 2016, 46(3):517-529.
    [5]
    Schick A, Bauml M, Stiefelhagen R. Improving foreground segmentations with probabilistic superpixel Markov random fields[C]//Computer Vision and Pattern Recognition Workshops IEEE, 2012:27-31.
    [6]
    Na Kyoung O, Changick Kim. Unsupervised texture segmentation of natural scene images using regionbased markov random field[J]. Journal of Signal Processing Systems, 2016, 83(3):423-436.
    [7]
    Ayvaci A, Soatto S. Motion segmentation with occlusions on the superpixel graph[C]//International Conference on Computer Vision Workshops IEEE, 2010:727-734.
    [8]
    Lee T, Fidler S, Levinshtein A, et al. A framework for symmetric part detection in cluttered scenes[J]. Symmetry, 2015, 7(3):1333-1351.
    [9]
    Fu K, Gong C, Yang J, et al. Superpixel based color contrast and color distribution driven salient object detection[J]. Image Communication, 2013,28(10):1448-1463.
    [10]
    Xie Y, Lu H, Yang M H. Bayesian saliency via low and mid-level cues[J]. IEEE Trans Image Process, 2013, 22(5):1689-1698.
    [11]
    Peng H, Bing L, Ling H, et al. Salient object detection via structured matrix decomposition[J]. IEEE Trans Pattern Anal, 2016, 99:796-802.
    [12]
    Feng J, Cao Z, Pi Y. Polarimetric contextual classification of PolSAR images using sparse representation and superpixels[J]. Remote Sens, 2014, 6:7158-7181.
    [13]
    Garcia-Pedrero A, Rodríguez-Esparragón D, Gonzalo-Martín C, et al. Automatic identification of shrub vegetation of the Teide National Park[C]//Proceedings of the International Work Conference on Bio-Inspired Intelligence (IWOBI), San Sebastian, Spain, 2015:55-60.
    [14]
    Ren X, Malik J. Learning a classification model for segmentation[C]//Proceedings of the IEEE International Conference on Computer Vision, 2003.
    [15]
    Han C Y. Improved SLIC imagine segmentation algorithm based on K-means[J]. Cluster Computing, 2017, 20:1-7.
    [16]
    Shi J, Malik J. Normalized cuts and image segmentation[J]. IEEE Trans Pattern Anal Mach Intell, 2000, 22(8):888-905.
    [17]
    Cour T, Benezit F, Shi J. Spectral segmentation with multiscale graph decomposition[J]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2005:1124-1131.
    [18]
    Pedro Felzenszwalb, Daniel Huttenlocher. Efficient graph-based image segmentation[J]. International Journal of Computer Vision (IJCV), 2004, 59(2):167-181.
    [19]
    Moore A P, Prince S J D, Warrell J, et al. Superpixel lattices[C]//Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE, 2008:1-8.
    [20]
    Veksler O, Boykov Y, Mehrani P. Superpixels and supervoxels in an energy optimization framework[C]//Computer Vision-ECCV 2010, European Conference on Computer Vision, Heraklion, Crete, Greece, September 5-11, 2010, Proceedings, DBLP, 2010:211-224.
    [21]
    Liu M Y, Tuzel O, Ramalingam S, et al. Entropyrate clustering:cluster analysis via maximizing a submodular function subject to a matroid constraint[J]. IEEE Trans Pattern Anal Mach Intell, 2013, 36(1):99-112.
    [22]
    Zhang Y, Hartley R, Mashford J, et al. Superpixels via pseudo-Boolean optimization[C]//IEEE International Conference on Computer Vision, IEEE, 2012:1387-1394.
    [23]
    Luc Vincent, Pierre Soille. Watersheds in digital spaces:an efficient algorithm based onimmersion simulations[J]. IEEE Transactions on Pattern Analalysis and Machine Intelligence, 1991, 13(6):583-598.
    [24]
    Comaniciu D, Meer P. Meanshift:a robust approach toward feature space analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5):603-619.
    [25]
    Vedaldi A, Soatto S. (2008) Quick shift and kernel methods for mode seeking[C]//Forsyth D, Torr P, Zisserman A, eds. Computer Vision-ECCV 2008. Lecture Notes in Computer Science, Vol 5305:705-718.
    [26]
    Levinshtein A, Stere A, Kutulakos K N, et al. TurboPixels:fast superpixels using geometric flows[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2009, 31(12):2290-2297.
    [27]
    Bergh M V D, Boix X, Roig G, et al. SEEDS:superpixels extracted via energy-driven sampling[C]//European Conference on Computer Vision, Springer-Verlag, 2012:13-26.
    [28]
    Achanta R, Shaji A, Smith K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2012, 34(11):2274-2282.
    [29]
    Zou H, Qin X, Zhou S, et al. A likelihood-based SLIC superpixel algorithm for SAR images using generalized gamma distribution[J]. Sensors, 2016, 16(7):1107-1123.
    [30]
    Martin D, Fowlkes C, Tal D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the Eighth IEEE International Conference on Computer Vision, ICCV2001,2001,2:416-423.
    [31]
    Arbeláez P, Maire M, Fowlkes C, et al. Contour detection and hierarchical image segmentation[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(5):898-916.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (511) PDF downloads(362) Cited by()
    Proportional views
    Related

    /

      Return
      Return
        Baidu
        map