Welcome to Journal of Beijing Institute of Technology
Volume 28Issue 3
.
Turn off MathJax
Article Contents
Chuanjing Song. Perturbation to Noether Quasi-Symmetry and Adiabatic Invariants for Nonholonomic Systems on Time Scales[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2019, 28(3): 469-476. doi: 10.15918/j.jbit1004-0579.18092
Citation: Chuanjing Song. Perturbation to Noether Quasi-Symmetry and Adiabatic Invariants for Nonholonomic Systems on Time Scales[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2019, 28(3): 469-476.doi:10.15918/j.jbit1004-0579.18092

Perturbation to Noether Quasi-Symmetry and Adiabatic Invariants for Nonholonomic Systems on Time Scales

doi:10.15918/j.jbit1004-0579.18092
  • Received Date:2018-05-03
  • Perturbation to Noether quasi-symmetry and adiabatic invariants for the nonholonomic system on time scales are studied. Firstly, some properties of time scale calculus are reviewed. Secondly, the differential equations of motion for the nonholonomic system on time scales, Noether quasi-symmetry and conserved quantity are given. Thirdly, perturbation to Noether quasi-symmetry and adiabatic invariants, which are the main results of this paper, are investigated. The main results are achieved by two steps, the first step is to obtain adiabatic invariants without transforming the time, and the next is to obtain adiabatic invariants under the infinitesimal transformations of both the time and the coordinates. And in the end, an example is given to illustrate the methods and results.
  • loading
  • [1]
    Frederico G S F, Torres D F M. Fractional Noether's theorem in the Riesz-Caputo sense[J]. Applied Mathematics & Computation, 2010, 217(3):1023-1033.
    [2]
    Kong X L, Wu H B, Mei F X. Variational integrators for forced Birkhoffian systems[J]. Applied Mathematics & Computation, 2013, 225(12):326-332.
    [3]
    Malinowska A B. A formulation of the fractional Noether-type theorem for multidimensional Lagrangians[J]. Applied Mathematics Letters, 2012, 25(11):1941-1946.
    [4]
    Mei F X. Analytical mechanics Ⅱ[M]. Beijing:Beijing Institute of Technology Press, 2013. (in Chinese)
    [5]
    Mušicki D. Generalized Noether's theorem for continuous mechanical systems[J]. Acta Mechanica, 2017, 228(3):901-917.
    [6]
    Xia L L, Chen L Q. Conformal invariance of Mei symmetry for discrete Lagrangian systems[J]. Acta Mechanica, 2013, 224(9):2037-2043.
    [7]
    Mei F X. Form invariance of Lagrange system[J]. Journal of Beijing Institute of Technology, 2000, 9(2):120-124.
    [8]
    Mei F X, Zhu H P. Lie symmetries and conserved quantities for the singular Lagrange system[J]. Journal of Beijing Institute of Technology, 2000, 9(1):11-14.
    [9]
    Zhang Y, Zhou X S. Noether theorem and its inverse for nonlinear dynamical systems with nonstandard Lagrangians[J]. Nonlinear Dynamics, 2016, 84(4):1867-1876.
    [10]
    Wu H B, Mei F X. Type of integral and reduction for a generalized Birkhoffian system[J]. Chinese Physics B, 2011, 20(10):104501.
    [11]
    Zhao Y Y, Mei F X. Symmetries and conserved quantities for mechanical systems[M]. Beijing:Science Press, 1999. (in Chinese)
    [12]
    Fu J L, Fu L P, Chen B Y, et al. Lie symmetries and their inverse problems of nonholonomic Hamilton systems with fractional derivatives[J]. Physics Letters A, 2016, 380(1-2):15-21.
    [13]
    Luo S K, Dai Y, Yang M J, et al. Basic theory of fractional conformal invariance of Mei symmetry and its applications to physics[J]. International Journal of Theoretical Physics, 2018, 57(4):1024-1038.
    [14]
    Burgers J M. Die adiabatischen invarianten bedingt periodischer systems[J]. Annals of Physics, 1917, 357(2):195-202.
    [15]
    Chen J, Zhang Y. Perturbation to Noether symmetries and adiabatic invariants for disturbed Hamiltonian systems based on El-Nabulsi nonconservative dynamics model[J]. Nonlinear Dynamics, 2014, 77(1-2):353-360.
    [16]
    Chen X W, Li Y M, Zhao Y H. Lie symmetries, perturbation to symmetries and adiabatic invariants of Lagrange system[J]. Physics Letters A, 2005, 337(4-6):274-278.
    [17]
    Jiang W A, Luo S K. A new type of non-Noether exact invariants and adiabatic invariants of generalized Hamiltonian systems[J]. Nonlinear Dynamics, 2012, 67(1):475-482.
    [18]
    Song C J, Zhang Y. Conserved quantities and adiabatic invariants for El-Nabulsi's fractional Birkhoff system[J]. International Journal of Theoretical Physics, 2015, 54(8):2481-2493.
    [19]
    Wang P. Perturbation to symmetry and adiabatic invariants of discrete nonholonomic nonconservative mechanical system[J]. Nonlinear Dynamics, 2011, 68(1-2):53-62.
    [20]
    Zhang M J, Fang J H, Lu K. Perturbation to Mei symmetry and generalized Mei adiabatic invariants for Birkhoffian systems[J]. International Journal of Theoretical Physics, 2010, 49(2):427-437.
    [21]
    Chen X W, Mei F X. Exact invariants and adiabatic invariants of nonholonomic variable mass systems[J]. Journal of Beijing Institute of Technology, 2001, 10(2):131-137.
    [22]
    Truuittin H L. My mathematical expectations[M]. Berlin:Springer, 1973.
    [23]
    Bell E T. Men of mathematics[M]. New York:Simon and Schuster, 1937.
    [24]
    Hilger S. Ein maẞkettenkalkiil mit anwendung auf zentrumsmannigfaltigkeiten[D]. Würzburg:Universität Würzburg, 1988. (in German)
    [25]
    Bohner M. Calculus of variations on time scales[J]. Dynamic Systems & Applications, 2004, 13(3):339-349.
    [26]
    Hilscher R, Zeidan V. Calculus of variations on time scales:weaklocal piecewise solutions with variable endpoints[J]. Journal of Mathematical Analysis & Applications, 2004, 289(1):143-166.
    [27]
    Ferreira R A C, Malinowska A B, Torres D F M. Optimality conditions for the calculus of variations with higher-order delta derivatives[J]. Applied Mathematics Letters, 2011, 24(1):87-92.
    [28]
    Bartosiewicz Z, Martins N, Torres D F M. The second Euler-Lagrange equation of variational calculus on time scales[J]. European Journal of Control, 2011,17(1):9-18.
    [29]
    Bartosiewicz Z, Torres D F M. Noether's theorem on time scales[J]. Journal of Mathematical Analysis & Applications, 2008, 342(2):1220-1226.
    [30]
    Cai P P, Fu J L, Guo Y X. Noether symmetries of the nonconservative and nonholonomic systems on time scales[J]. Science China Physics, Mechamics & Astronomy, 2013, 56(5):1017-1028.
    [31]
    Martins N, Torres D F M. Noether's symmetry theorem for nabla problems of the calculus of variations[J]. Applied Mathematics Letters, 2010, 23(12):1432-1438.
    [32]
    Peng K K, Luo Y P. Dynamics symmetries of Hamiltonian system on time scales[J]. Journal of Mathematical Physics, 2014, 55(4):042702.
    [33]
    Song C J, Zhang Y. Noether theorem for Birkhoffian systems on time scales[J]. Journal of Mathematical Physics, 2015, 56(10):102701.
    [34]
    Zhang Y. Noether theory for Hamiltonian system on time scales[J]. Chinese Quarterly of Mechanics, 2016, 37(2):214-224. (in Chinese)
    [35]
    Zu Q H, Zhu J Q. Noether theorem for nonholonomic nonconservative mechanical systems in phase space on time scales[J]. Journal of Mathematical Physics, 2016, 57(8):082701.
    [36]
    Bohner M, Peterson A. Dynamic equations on time scales-an introduction with applications[M]. Boston:Birkhäuser, 2001.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (481) PDF downloads(263) Cited by()
    Proportional views
    Related

    /

      Return
      Return
        Baidu
        map