Welcome to Journal of Beijing Institute of Technology
Volume 29Issue 1
.
Turn off MathJax
Article Contents
Jing Wang, Ming Zhang, Yu Zhu, Xin Li, Leijie Wang. Optimal Actuator Placement and Active Vibration Control of Over-Actuated Motion System in the Wafer Stage[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2020, 29(1): 80-88. doi: 10.15918/j.jbit1004-0579.18133
Citation: Jing Wang, Ming Zhang, Yu Zhu, Xin Li, Leijie Wang. Optimal Actuator Placement and Active Vibration Control of Over-Actuated Motion System in the Wafer Stage[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2020, 29(1): 80-88.doi:10.15918/j.jbit1004-0579.18133

Optimal Actuator Placement and Active Vibration Control of Over-Actuated Motion System in the Wafer Stage

doi:10.15918/j.jbit1004-0579.18133
  • Received Date:2018-11-14
  • The null space of the 6-DOF gain decoupling matrix of actuators and a modified velocity feedback controller are adopted to suppress the vibration of the wafer stage during exposure. To deal with varying flexibilities at different performance locations, the vibration controller is designed to be a time-variant linear quadratic regulator, using the conventional gain scheduling method, which could provide good vibration control for each field under exposure. This control method can guarantee the stability of the closed-loop system and will not deteriorate the rigid modes control of the wafer stage. To minimize the control spillover caused by the higher uncontrolled modes, actuator placement is optimized to minimize their controllability grammians in modal coordinates. An unconstrained rectangular plate is used to represent the fine stage of the wafer stage. Effectiveness of the proposed method is verified on the plate through a closed-loop simulation.
  • loading
  • [1]
    Butler H. Position control in lithographic equipment[J]. IEEE Control Systems Magazine, 2011, 31(5):28-47.
    [2]
    Roover D D. Motion control of a wafer stage:A design approach for speeding up IC production[M]. Delft, Nederland:Delft University of Technology, 1997.
    [3]
    Sluijk B G, Castenmiller T, Jongh R C D, et al. Performance results of a new generation of 300-mm lithography systems[C]//26th Annual International Symposium on Microlithography, International Society for Optics and Photonics, 2001:544-557.
    [4]
    Herpen R V, Oomen T, Kikken E, et al. Exploiting additional actuators and sensors for nano-positioning robust motion control[J]. Mechatronics, 2014, 24(6):619-631.
    [5]
    Ronde M J C, Schneiders M G E, Kikken E, et al. Model-based spatial feedforward for over-actuated motion systems[J]. Mechatronics, 2014, 24(4):307-317.
    [6]
    Hoogendijk R, Heertjes M F, Molengraft M J G V D, et al. Directional notch filters for motion control of flexible structures[J]. Mechatronics, 2014, 24(6):632-639.
    [7]
    Schneiders M G E, Molengraft M J G V D, Steinbuch M. Benefits of over-actuation in motion sys-tems[C]//IEEE American Control Conference, 2004, 1:505-510.
    [8]
    Wu D, Huang L, Pan B, et al. Experimental study and numerical simulation of active vibration control of a highly flexible plate using piezoelectric intelligent ma-terial[J]. Aerospace Science and Technology, 2014, 37:10-19.
    [9]
    Kim S M, Pietrzko S, Brennan M J. Active vibration isolation using an electrical damper or an electrical dy-namic absorber[J]. IEEE Transaction on Control Systems Technology, 2008, 16(2):245-254.
    [10]
    Oomen T, Herpen RV, Quist S, et al. Next-generation wafer stage motion control:connecting system identi-fication and robust control[C]//American Control Conference, 2012:2455-2460.
    [11]
    Preumont A. Vibration control of active structures:an introduction[M]. Dordrecht, Nederland:Springer, 1999.
    [12]
    Soong T T, Costantinou M C. Passive and active struc-tural vibration control in civil engineering[M]. Vienna, Austria:Springer, 1994.
    [13]
    Zhou K, Doyle J C. Essentials of robust control[M]. Upper Saddle River, NJ:Prentice Hall, 1998.
    [14]
    White A P, Zhu G, Choi J. Linear parameter-varying control for engineering applications[M]. New York:Springer, 2013.
    [15]
    Moheimani S O R, Pota H R, Petersen I R. Spatial balanced model reduction for flexible structures[J]. Automatica, 1999, 35(2):269-277.
    [16]
    Halim D, Moheimani S O R. Spatial resonant control of flexible structures-application to a piezoelectric lami-nate plate[J]. IEEE Transactions on Control Systems Technology, 2001, 9(1):37-53.
    [17]
    Halim D, Moheimani S O R. Spatial H2 control of a piezoelectric laminate beam:experimental implementa-tion[J]. IEEE Transactions on Control Systems Technology, 2002, 10(4):533-546.
    [18]
    Halim D, Moheimani S O R. Experimental implementation of spatial H control on a piezoelectric-laminate beam[J]. IEEE/ASME Transactions On Mechatronics, 2002, 7(3):346-356.
    [19]
    Lierop C M M V, Jansen J W, Damen A A H, et al. Model-based commutation of a long-stroke magnetically levitated linear actuator[J]. IEEE Transactions on Industry Applications, 2009, 45(6):1982-1990.
    [20]
    Balas M J. Direct velocity feedback control of large space structures[J]. Journal of Guidance, Control, and Dynamics, 1979, 2(3):252-253.
    [21]
    Oomen T A E T. System identification for robust and inferential control:with applications to ILC and precision motion systems. Eindhoven, Nederland:Technische Universiteit Eindhoven, 2010.
    [22]
    Kim W, Trumper D L. High-precision magnetic levitation stage for photolithography[J]. Precision Engineering, 1998, 22(2):66-77.
    [23]
    Fang J Q, Li Q S, Jeary A P. Modified independent modal space control of md of systems[J]. Journal of Sound and Vibration, 2003, 261(3):421-441.
    [24]
    Paijmans B, Symens W, Brussel H V, et al. A gain-scheduling-control technique for mechatronic systems with position-dependent dynamics[C]//IEEE American Control Conference, 2006:6.
    [25]
    Wassink M G, Wal M V D, Scherer C, et al. LPV con-trol for a wafer stage:Beyond the theoretical solution[J]. Control Engineering Practice, 2005, 13(2):231-245.
    [26]
    Park J W, Park U S. Spillover suppression via eigen-structure assignment in large flexible structures[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(3):599-602.
    [27]
    Inman D J. Active modal control for smart structures[J]. Philosophical Transactions of the Royal Society B Biological Sciences, 2001, 359(1778):205-219.
    [28]
    Shamma W J R J S. Research on gain scheduling[J]. Automatica, 2000, 36(10):1401-1425.
    [29]
    Rugh W J, Shamma J S. Survey research on gain scheduling[J]. Automatica, 2000, 36(10):1401-1425.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (431) PDF downloads(200) Cited by()
    Proportional views
    Related

    /

      Return
      Return
        Baidu
        map