Welcome to Journal of Beijing Institute of Technology
Volume 29Issue 4
Dec. 2020
Turn off MathJax
Article Contents
Lin Cao, Dong Zhang, Ao Zhang. Back-Stepping Control for Flexible Air-Breathing Hypersonic Vehicles Based on Uncertainty and Disturbance Estimator[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2020, 29(4): 504-513. doi: 10.15918/j.jbit1004-0579.20001
Citation: Lin Cao, Dong Zhang, Ao Zhang. Back-Stepping Control for Flexible Air-Breathing Hypersonic Vehicles Based on Uncertainty and Disturbance Estimator[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2020, 29(4): 504-513.doi:10.15918/j.jbit1004-0579.20001

Back-Stepping Control for Flexible Air-Breathing Hypersonic Vehicles Based on Uncertainty and Disturbance Estimator

doi:10.15918/j.jbit1004-0579.20001
Funds:National Natural Science Foundation of China(11672235)
More Information
  • Corresponding author:engineer, Ph. D. E-mail:caolinzk789@126.com
  • Received Date:2020-01-06
  • Publish Date:2020-12-30
  • A theoretical framework of nonlinear flight control for a flexible air-breathing hypersonic vehicle(FAHV) is proposed in this paper. In order to suppress the system uncertainty and external disturbance, an uncertainty and disturbance estimator(UDE) based back-stepping control strategy is designed for a dynamic state-feedback controller to provide stable velocity and altitude tracking. Firstly, the longitudinal dynamics of FAHV is simplified into a closure loop form with lumped uncertainty and disturbance. Then the UDE is applied to estimate the lumped uncertainty and disturbance for the purpose of control input compensation. While a nonlinear tracking differentiator is introduced to solve the problem of “explosion of term” in the back-stepping control. The stability of the UDE-based control strategy is proved by using Lyapunov stability theorem. Finally, simulation results are presented to demonstrate the capacity of the proposed control strategy.
  • loading
  • [1]
    Rodriguez A A, Dickeson J J. Modeling and control of scramjet-powered hypersonic vehicles: Challenges, trends, &tradeoffs [C]//AIAA Guidance, Navigation and Control Conference and Exhibit, AIAA 2008-6793, Hawaii, 2008.
    [2]
    Bolender M A, Doman D B. A nonlinear model for the longitudinal dynamics of a hypersonic air-breathing vehicle [C]//AIAA Guidance, Navigation, and Control Conference, AIAA 2005-6255, San Francisco, 2005.
    [3]
    Marrison M I, Stengel R F. Design of robust control system for a hypersonic aircraft [J]. Journal of Guidance, Control, and Dynamics, 1998, 21(1): 58−63. doi:10.2514/2.4197
    [4]
    Wang Q, Stengel R F. Robust nonlinear control of a hypersonic aircraft [J]. Journal of Guidance, Control, and Dynamics, 2000, 23(4): 577−585. doi:10.2514/2.4580
    [5]
    Xu H J, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle [J]. Journal of Guidance, Control, and Dynamics, 2004, 27(5): 829−838. doi:10.2514/1.12596
    [6]
    Li S H, Sun H B, Sun C Y. Composite controller design for an air-breathing hypersonic vehicle [J]. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems and Control Engineering, 2012, 226(15): 651−664.
    [7]
    Bolender M A, Oppenheimer M W, Doman D B. Effects of unsteady and viscous aerodynamics on dynamics of a flexible air-breathing hypersonic vehicle[C]//AIAA Atmospheric Flight Conference and Exhibit, AIAA 2007-6397, HiIton Head, South Carolina, 2007.
    [8]
    Shen H, Liu Y, Chen B, et al. Control-relevant modeling and performance limitation analysis for flexible air-breathing hypersonic vehicles [J]. Aerospace Science and Technology, 2018, 76: 340−349. doi:10.1016/j.ast.2018.02.016
    [9]
    Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle [J]. Journal of Spacecraft and Rocket, 2007, 44(2): 374−387. doi:10.2514/1.23370
    [10]
    Groves K P, Sigthorsson D O, Serrani A, et al. Reference command tracking for a linearized model of an air-breathing hypersonic vehicle[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, California, 2005.
    [11]
    Parker J T, Serrani A, Yurkovich S, et al. Control oriented modeling of an air-breathing hypersonic vehicle [J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 856−869. doi:10.2514/1.27830
    [12]
    Rehman O, Fidan B, Petersen R I. Uncertainty modeling for robust minimax LQR control of hypersonic flight vehicle[C]//AIAA Guidance, Navigation, and Control Conference, Toronto, Canada, 2010.
    [13]
    Zong Q, Wang J, Tao Y. Adaptive high-order dynamic sliding mode control for a flexible air-breathing hypersonic vehicle [J]. International Journal of Robust and Nonlinear Control, 2013, 23: 1718−1736. doi:10.1002/rnc.3040
    [14]
    Zong Q, Dong Q, Wang F, et al. Super twisting sliding mode control for a flexible air-breathing hypersonic vehicle base on disturbance observer [J]. Science China, 2015, 58: 070207.
    [15]
    Zong Q, Wang J, Tian B L, et al. Quasi-continuous high-order sliding mode controller and observer design for flexible hypersonic vehicle [J]. Aerospace Science and Technology, 2013, 27: 127−137. doi:10.1016/j.ast.2012.07.004
    [16]
    Hu X, Wu L, Hu C, et al. Fuzzy guaranteed cost tracking control for a flexible air-breathing hypersonic vehicle [J]. IET Control Theory and Applications, 2012, 6(9): 1238−1249. doi:10.1049/iet-cta.2011.0065
    [17]
    Zong Q, Wang F, Tian B L, et al. Robust adaptive approximate backstepping control design for a flexible air-breathing hypersonic vehicle [J]. Journal of Aerospace Engineering, 2015, 28(4): 04014107.
    [18]
    Wang N, Wu H N, Guo L. Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles [J]. Nonlinear Dynamics, 2014, 78: 2141−4159. doi:10.1007/s11071-014-1572-1
    [19]
    Bu X W, Wu X Y, Zhang R, et al. Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle [J]. Journal of The Franklin Institute, 2015, 352: 1739−1765. doi:10.1016/j.jfranklin.2015.01.014
    [20]
    Zong Q, Wang F, Tian B L, et al. Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constrains and uncertainty [J]. Nonlinear Dynamics, 2014, 78: 289−315. doi:10.1007/s11071-014-1440-z
    [21]
    Wang J, Zong Q, Su R, et al. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle [J]. ISA Transactions, 2014, 53: 690−698. doi:10.1016/j.isatra.2014.01.002
    [22]
    Zhong Q C, Kuperman A, Stobart R K. Design of UDE-based controllers from their two-degree-of-freedom nature [J]. International Journal of Robust Nonlinear Control, 2011, 21(17): 1994−2008. doi:10.1002/rnc.1674
    [23]
    Zhong Q C, Rees D. Control of uncertain LTI systems based on an uncertainty and disturbance estimator [J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126: 905−910. doi:10.1115/1.1850529
    [24]
    Chavez F R, Schdimt D K. Analytical aeropropulsive/aeroelastic hypersonic vehicle model with dynamic analysis [J]. Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1380−1319. doi:10.2514/3.21364
    [25]
    Fiorentini L. Nonlinear adaptive controller design for air-breathing hypersonic vehicles[D]. Columbus: The Ohio State University, 2010.
    [26]
    Bu X W, Wu X Y, Chen Y X, et al. Design of a class of new nonlinear disturbance observers based on tracking differentiators for uncertain dynamic systems [J]. International Journal of Control, Automation, and Systems, 2015, 13(3): 595−602. doi:10.1007/s12555-014-0173-6
    [27]
    Fiorentini L, Serrani A, Bolender M A, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles [J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 401−416.
    [28]
    Ren B B, Zhong Q C, Chen J H. Robust control for a class of non-affine nonlinear systems based on the uncertainty and disturbance estimator [J]. IEEE Transactions on Industrial Electronics, 2015, 62(9): 5881−5888. doi:10.1109/TIE.2015.2421884
    [29]
    Shendge P D, Patre B M. Robust model following load frequency sliding mode controller based on UDE and error improvement with high order filter [J]. IAENG International Journal of Applied Mathematics, 2007, 37: 1−6.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (239) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map