Welcome to Journal of Beijing Institute of Technology
Volume 30Issue zk
Jun. 2021
Turn off MathJax
Article Contents
Minfeng Wei, Min Xu, Fengdi Zhang. Dynamic State Estimation for Power System with Communication Constraint Using Event-Triggered Cubature Kalman Filter[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2021, 30(zk): 129-140. doi: 10.15918/j.jbit1004-0579.20003
Citation: Minfeng Wei, Min Xu, Fengdi Zhang. Dynamic State Estimation for Power System with Communication Constraint Using Event-Triggered Cubature Kalman Filter[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2021, 30(zk): 129-140.doi:10.15918/j.jbit1004-0579.20003

Dynamic State Estimation for Power System with Communication Constraint Using Event-Triggered Cubature Kalman Filter

doi:10.15918/j.jbit1004-0579.20003
More Information
  • Corresponding author:Ph. D. E-mail:18811789446@163.com
  • Received Date:2020-01-09
  • Publish Date:2021-06-30
  • Accurate dynamic state estimation plays an important role in power systems. Although various filtering algorithms, such as unscented Kalman filter (UKF) and particle filter (PF), have been proposed based on phasor measurement units (PMUs), they occupy a huge communication bandwidth without specific concern, which puts heavy burden on the communication network especially when wireless communications are widely applied in smart grids. In order to relieve this communication burden, the event-triggered cubature Kalman filter (ETCKF) is proposed based on the stochastic event-triggered schedule in this paper, which guarantees that only the measurements containing innovational information are transmitted and has advantages over other event-triggered schedules, such as the deterministic event-triggered schedule, since it can maintain the Gaussian property of the conditional distribution of the system state. Based on the developed nonlinear event-triggered schedule, the cubature Kalman filter (CKF), using the third-degree spherical-radial cubature rule, further provides more accurate estimation than UKF and has lower computational complexity than PF. The proposed filter can effectively reduce the communication rate while ensuring the accuracy of filtering. Finally, the standard IEEE 39-bus system is utilized to verify the feasibility and performance of the proposed method.
  • loading
  • [1]
    Su W, Wang J, Roh J. Stochastic energy scheduling in microgrids with intermittent renewable energy resources [J]. IEEE Trans Smart Grid, 2014, 5(4): 1876−1883. doi:10.1109/TSG.2013.2280645
    [2]
    Zhao J, Zhang G, Das K, et al. Power system real-time monitoring by using PMU-based robust state estimation method [J]. IEEE Trans Smart Grid, 2015, 7(1): 300−309.
    [3]
    Ghahremani E, Kamwa I. Local and wide-area PMU-based decentralized dynamic state estimation in multi-machine power systems [J]. IEEE Trans Power Syst, 2016, 31(1): 547−562. doi:10.1109/TPWRS.2015.2400633
    [4]
    Emami K, Fernando T, Iu H H C, et al. Application of unscented transform in frequency control of a complex power system using noisy PMU data [J]. IEEE Trans Ind Informat, 2016, 12(2): 853−863. doi:10.1109/TII.2015.2491222
    [5]
    Zhao M, Abur A. Multi area state estimation using synchronized phasor measurements [J]. IEEE Transactions on Power Systems, 2005, 20(2): 611−617. doi:10.1109/TPWRS.2005.846209
    [6]
    Gharban C K, Cory B J. Non-linear dynamic power system state estimation [J]. IEEE Power Eng Rev, 1986, 6(8): 54−55.
    [7]
    Singh A K, Pal B C. Decentralized dynamic state estimation in power systems using unscented transformation [J]. IEEE Trans Power Syst, 2014, 29(2): 794−804. doi:10.1109/TPWRS.2013.2281323
    [8]
    Shahraeini M, Javidi M H. Wide area measurement systems advanced topics in measurements [M]. Zahurul Hag. InTech, 2012.
    [9]
    Shahraeini M, Javidi M H, Ghazizadeh M S. Comparison between communication infrastructures of centralized and decentralized wide area measurement systems [J]. IEEE Trans Smart Grid, 2011, 2(1): 206−211. doi:10.1109/TSG.2010.2091431
    [10]
    Qi J, Sun K, Wang J, et al. Dynamic state estimation for multi-machine power system by unscented Kalman filter with enhanced numerical stability [J]. IEEE Trans Smart Grid, 2015, 9(2): 1−1.
    [11]
    Wang C, Qin Z, Hou Y, et al. Multi-area dynamic state estimation with PMU measurements by an equality constrained extended kalman filter [J]. IEEE Trans Smart Grid, 2016, 9(2): 1−1.
    [12]
    Emami K, Fernando T, C H H, et al. Particle filter approach to dynamic state estimation of generators in power systems [J]. IEEE Trans Power Syst, 2014, 30(5): 2665−2675.
    [13]
    Zhou N, Meng D, Huang Z, et al. Dynamic state estimation of a synchronous machine using PMU data: A comparative study [J]. IEEE Trans Smart Grid, 2015, 6(1): 450−460. doi:10.1109/TSG.2014.2345698
    [14]
    Ghahremani E, Kamwa I. Dynamic state estimation in power system by applying the extended kalman filter with unknown inputs to phasor measurements [J]. IEEE Trans Power Syst, 2011, 26(4): 2556−2566. doi:10.1109/TPWRS.2011.2145396
    [15]
    Bose A. Smart transmission grid applications and their supporting infrastructure [J]. IEEE Trans Smart Grid, 2010, 1(1): 11−19. doi:10.1109/TSG.2010.2044899
    [16]
    Gungor V C, Lu B, Hancke G P. Opportunities and challenges of wireless sensor networks in smart grid [J]. IEEE Trans Ind Electron, 2010, 57(10): 3557−3564. doi:10.1109/TIE.2009.2039455
    [17]
    Wang S, Gao W, Wang J, et al. Synchronized sampling technology-based compensation for network effects in wams communication [J]. IEEE Trans Smart Grid, 2012, 3(2): 837−845. doi:10.1109/TSG.2012.2183902
    [18]
    Kansal P, Bose A. Bandwidth and latency requirements for smart transmission grid applications [J]. IEEE Trans Smart Grid, 2012, 3(3): 1344−1352. doi:10.1109/TSG.2012.2197229
    [19]
    Ho Y C, Cassandras C. A new approach to the analysis of discrete event dynamic systems [J]. Automatica, 1983, 19(2): 149−167. doi:10.1016/0005-1098(83)90088-2
    [20]
    Han D, Mo Y, Wu J, et al. Stochastic event-triggered sensor schedule for remote state estimation [J]. IEEE Trans Autom Control, 2015, 60(10): 2661−2675. doi:10.1109/TAC.2015.2406975
    [21]
    Astrom K J, Bo B. Comparison of periodic and event based sampling for first order stochastic systems[C]// Proceedings of IFAC World Congress, 1999, 11: 301-306.
    [22]
    Imer O C, Basar T. Optimal estimation with limited measurements [J]. Int J of syst Control & Commun, 2010, 2(1): 5−29.
    [23]
    Cogill R, Lall S, Hespanha J P. A constant factor approximation algorithm for event-based sampling[C]// American Control Conference, 2007: 305-311.
    [24]
    Li L, Lemmon M, Wang X. Event-triggered state estimation in vector linear processes[C]// American Control Conference, 2010: 2138-2143.
    [25]
    Trimpe S, D’Andrea R. An experimental demonstration of a distributed and event-based state estimation algorithm[C]// IFAC Proceedings Volumes, 2011, 44(1): 8811-8818.
    [26]
    Rabi M, Moustakides G V, Baras J S. Adaptive sampling for linear state estimation [J]. SIAM J on Control & Optim, 2012, 50(2): 672−702.
    [27]
    Wu J, Jia Q S, Johansson K H, et al. Event-based sensor data scheduling: Trade-off between communication rate and estimation quality [J]. IEEE Trans Autom Control, 2013, 58(4): 1041−1046. doi:10.1109/TAC.2012.2215253
    [28]
    Lu J, Darmofal D L. Higher-dimensional integration with Gaussian weight for applications in probabilistic design [J]. SIAM J on Scientific Comput, 2004, 26(2): 613−624. doi:10.1137/S1064827503426863
    [29]
    Arasaratnam I, Haykin S. Cubature Kalman filters [J]. IEEE Trans Autom Control, 2009, 54(6): 1254−1269. doi:10.1109/TAC.2009.2019800
    [30]
    Wu Y, Hu D, Wu M, et al. A numerical-integration perspective on Gaussian filters [J]. IEEE Trans Signal Process, 206, 54(8): 2910−2921.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)/Tables(1)

    Article Metrics

    Article views (379) PDF downloads(35) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map