Welcome to Journal of Beijing Institute of Technology
Volume 30Issue zk
Jun. 2021
Turn off MathJax
Article Contents
Xin Teng, Defu Lin, Long Xiao, Fengdi Zhang. Investigation of Reusable Launch Vehicle Landing Guidance Control with Multiple Sliding Surface Technique[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2021, 30(zk): 151-158. doi: 10.15918/j.jbit1004-0579.20004
Citation: Xin Teng, Defu Lin, Long Xiao, Fengdi Zhang. Investigation of Reusable Launch Vehicle Landing Guidance Control with Multiple Sliding Surface Technique[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2021, 30(zk): 151-158.doi:10.15918/j.jbit1004-0579.20004

Investigation of Reusable Launch Vehicle Landing Guidance Control with Multiple Sliding Surface Technique

doi:10.15918/j.jbit1004-0579.20004
More Information
  • Corresponding author:Ph. D. E-mail:18811789446@163.com
  • Received Date:2020-01-09
  • Publish Date:2021-06-30
  • This paper proposes an autonomous approach and landing guidance law for a reusable launch vehicle (RLV) at the specified runway touchdown. With the full nonlinear point-mass dynamics, the multiple sliding surfaces guidance (MSSG) technique is developed for the closed-loop guidance law to guarantee a successful approach and landing (A&L) movement, which has the same advantage in the finite time convergent property as higher order sliding mode control. Its global stability is proved using Lyapunov theory. The resultant guidance law has features in on-line trajectories calculation without any off-line analysis only using the boundary conditions of the A&L phase and instantaneous states of the RLV. Therefore, it is capable of targeting different touchdown points on the runway and overcoming large initial condition errors. Simulations are provided to verify the effectiveness of the proposed law.
  • loading
  • [1]
    Kluever C A. Unpowered approach and landing guidance using trajectory planning [J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 967−974. doi:10.2514/1.7877
    [2]
    Kluever C A. Unpowered approach and landing guidance with normal acceleration limitations [J]. Journal of Guidance, Control, and Dynamics, 2007, 30(3): 882−885. doi:10.2514/1.28081
    [3]
    Schierman J D, Ward D G, Monaco J F, et al. A reconfigurable guidance approach for reusable launch vehicles[C]// Proceedings of the 2001 AIAA Guidance, Navigation, and Control Conference, 2001.
    [4]
    Schierman J D, Hull J R, Ward D G. Adaptive guidance with trajectory reshaping for reusable launch vehicles[C]// Proceedings of the 2002 AIAA Guidance, Navigation, and Control Conference, 2002.
    [5]
    Schierman J D, Hull J R, Ward D G. On-line trajectory command reshaping for reusable launch vehicles[C]// Proceedings of the 2003 AIAA Guidance, Navigation, and Control Conference, 2003.
    [6]
    Schierman J D, Ward D G, Hull J R, et al. Integrated adaptive guidance and control for re-entry vehicles with flight test results [J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 975−988. doi:10.2514/1.10344
    [7]
    Schierman J D, Hull J R. In-flight entry trajectory optimization for reusable launch vehicles[C]// Proceedings of the 2005 AIAA Guidance, Navigation, and Control Conference, 2005.
    [8]
    Szmuk M, Eren U, Acikmese B. Successive convexification for mars 6-dof powered descent landing guidance[C]// AIAA Guidance, Navigation, and Control Conference, 2017: 1500.
    [9]
    Wang J, Cui N, Wei C. Optimal rocket landing guidance using convex optimization and model predictive control [J]. Journal of Guidance, Control, and Dynamics, 2019, 42(5): 1078−1092. doi:10.2514/1.G003518
    [10]
    Heydari A, Balakrishnan S N. Path planning using a novel finite horizon suboptimal controller [J]. Journal of Guidance, Control, and Dynamics, 2013, 36(4): 1210−1214. doi:10.2514/1.59127
    [11]
    Menon P K, Vaddi S S, Sengupta P. Robust landing guidance law for impaired aircraft [J]. Journal of Guidance, Control, and Dynamics, 2012, 35(6): 1865−1877. doi:10.2514/1.54213
    [12]
    Su X, Liu X, Shi P, et al. Sliding mode control of discrete-time switched systems with repeated scalar nonlinearities [J]. IEEE Transactions on Automatic Control, 2016, 62(9): 4604−4610.
    [13]
    Harl N, Balakrishnan S N. Reentry terminal guidance through sliding mode control [J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1): 186−199. doi:10.2514/1.42654
    [14]
    Furfaro R, Cersosimo D, Wibben D R. Asteroid precision landing via multiple sliding surfaces guidance techniques [J]. Journal of Guidance, Control, and Dynamics, 2013, 36(4): 1075−1092. doi:10.2514/1.58246
    [15]
    Zhang L, Wei C, Wu R, et al. Fixed-time extended state observer based non-singular fast terminal sliding mode control for a VTVL reusable launch vehicle [J]. Aerospace Science and Technology, 2018, 82: 70−79.
    [16]
    Li M M, Hu J. An approach and landing guidance design for reusable launch vehicle based on adaptive predictor–corrector technique [J]. Aerospace Science and Technology, 2018, 75: 13−23. doi:10.1016/j.ast.2017.12.037
    [17]
    Zhao Y, Sheng Y Z, Liu X D, et al. Analytic approach and landing guidance through a novel time-varying sliding mode control method [J]. Journal of Aerospace Engineering, 2016, 29(4): 1−11.
    [18]
    US COESA, Committee on Extension to the Standard Atmosphere. US Standard Atmosphere 1976, NOAA-S/T 76-1562[R]. Washington, DC: US Gov. Printing Office, Sup. DOCS, 1976.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(14)/Tables(2)

    Article Metrics

    Article views (319) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map