Welcome to Journal of Beijing Institute of Technology
Volume 29Issue 3
.
Turn off MathJax
Article Contents
Weimin Zhuang, Pengyue Wang, Yang Liu, Dongxuan Xie, Hongda Shi. Modelling and Simulation on the Effect of Hot Forming Damage on Three-Point Bending Performance of Beam Components[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2020, 29(3): 399-409. doi: 10.15918/j.jbit1004-0579.20031
Citation: Weimin Zhuang, Pengyue Wang, Yang Liu, Dongxuan Xie, Hongda Shi. Modelling and Simulation on the Effect of Hot Forming Damage on Three-Point Bending Performance of Beam Components[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2020, 29(3): 399-409.doi:10.15918/j.jbit1004-0579.20031

Modelling and Simulation on the Effect of Hot Forming Damage on Three-Point Bending Performance of Beam Components

doi:10.15918/j.jbit1004-0579.20031
Funds:the National Natural Science Foundation of China(51375201;51775227)
More Information
  • The effects of forming damage are analyzed, which occur during hot stamping process, on the load-carrying capacity and failure mode of hot stamped beams. A damage-coupled pre-forming constitutive model was proposed, in which the damage during hot stamping process was introduced into the service response. The constitutive model was applied into the three-point bending simulation of a hot stamped beam, and then the influences of forming damage on the load-carrying capacity and cracks propagation were investigated. The results show that the forming damage reduces the maximum load capacity of the hot stamped beam by 7.5%. It also causes the crack to occur earlier and promotes crack to propagate along the radial direction of the punch.
  • loading
  • [1]
    Merklein M, Johannes M, Lechner M, et al. A review on tailored blanks: Production, applications and evaluation [J]. Journal of Materials Processing Technology, 2014, 214: 151−164. doi:10.1016/j.jmatprotec.2013.08.015
    [2]
    Sun G, Deng M, Zheng G, et al. Design for cost performance of crashworthy structures made of high strength steel [J]. Thin Walled Structures, 2019, 138: 458−472.
    [3]
    Peng J, Li K, Dai Q, et al. Mechanical properties of pre-strained austenitic stainless steel from the view of energy density [J]. Results in Physics, 2018, 10: 187−193. doi:10.1016/j.rinp.2018.05.034
    [4]
    Peng J, Li K, Pei J, et al. The effect of pre-strain on tensile behaviour of 316L austenitic stainless steel [J]. Materials Science and Technology, 2018, 34: 547−560. doi:10.1080/02670836.2017.1421735
    [5]
    Grolleau V, Galpin B, Penin A, et al. Modelling the effect of forming history in impact simulations: Evaluation of the effect of thickness change and strain hardening based on experiments [J]. International Journal of Crashworthiness, 2008, 13: 363−373. doi:10.1080/13588260801976120
    [6]
    Dang X, Liu R. Research on simulation for crash of complete auto based on forming results[M]//Information, Computer and Application Engineering. 2015: 373–376. DOI: 10.1201/b18658-87.
    [7]
    Huh H, Kim K P, Kim S H, et al. Crashworthiness assessment of front side components in an auto-body considering the fabrication histories [J]. International Journal of Mechanical Sciences, 2003, 45: 1645−1660. doi:10.1016/j.ijmecsci.2003.09.022
    [8]
    Oliveira D A, Worswick M J, Grantab R, et al. Effect of forming process variables on the crashworthiness of aluminum alloy tubes [J]. International Journal of Impact Engineering, 2006, 32: 826−846. doi:10.1016/j.ijimpeng.2005.06.006
    [9]
    Najafi A, Rais-Rohani M. Sequential coupled process-performance simulation and multi-objective optimization of thin-walled tubes [J]. Materials and Design, 2012, 41: 89−98. doi:10.1016/j.matdes.2012.03.057
    [10]
    Niu J, Zhu P, Guo Y. Crush performance of top-hat tubular structures considering different forming conditions [J]. Advanced Materials Research, 2010, 139–141: 571−575.
    [11]
    Gumruk R, Karadenuiz S. The influences of the residual forming data on the quasi-static axial crash response of a top-hat section [J]. International Journal of Mechanical Sciences, 2009, 51: 350−362. doi:10.1016/j.ijmecsci.2009.03.010
    [12]
    Ryou H, Chunk K, Yoon J, et al. Incorporation of sheet-forming effects in crash simulations using ideal forming theory and hybrid membrane and shell method [J]. Journal of Manufacturing Science and Engineering, 2005, 127: 182−192. doi:10.1115/1.1830050
    [13]
    Mayer R. Theoretical effects of hydroforming on crashworthiness of straight sections[C]// 2004 ASME International Mechanical Engineering Congress and Exposition, 2008: 591–603.
    [14]
    Williams B W, Oliveira D A, Worswick M J, et al. Crashworthiness of high and low pressure hydroformed straight section aluminum tubes[C]//2005 SAE World Congress, 2005: 2010–01–0095.
    [15]
    Zhou J, Mu Y, Wang B. A damage-coupled unified viscoplastic constitutive model for prediction of forming limits of 22MnB5 at high temperatures [J]. International Journal of Mechanical Sciences, 2017, 133: 457−468. doi:10.1016/j.ijmecsci.2017.09.006
    [16]
    Lin J G, Liu Y, Dean T A. A review on damage mechanisms, models and calibration methods under various deformation conditions [J]. International Journal of Damage Mechanics, 2005, 14: 299−319. doi:10.1177/1056789505050357
    [17]
    Zhuang W M, Xie D X, Chen Y H. Experimental investigation of the effect of the material damage induced in sheet metal forming process on the service performance of 22MnB5 steel [J]. Chinese Journal of Mechanical Engineering, 2016, 29: 747−755. doi:10.3901/CJME.2016.0513.065
    [18]
    Aboutalebi F H, Banihashemi A. Numerical estimation and practical validation of Hooputra’s ductile damage parameters [J]. International Journal of Advanced Manufacturing Technology, 2014, 75: 1701−1710. doi:10.1007/s00170-014-6275-8
    [19]
    Aboutalebi F H, Farzin M, Masgaayekhi M. Numerical predictions and experimental validations of ductile damage evolution in sheet metal forming processes [J]. Acta Mechanica Solida Sinica, 2012, 25: 638−650. doi:10.1016/S0894-9166(12)60059-7
    [20]
    Li N, Mohamed M S, Cai J, et al. Experimental and numerical studies on the formability of materials in hot stamping and cold die quenching processes [J]. AIP Conference Proceedings, 2011, 1353: 1555−1561.
    [21]
    Li N, Sun C, Guo N, et al. Damage investigation of boron steel at hot stamping conditions[C]// 11th International Conference on Technology of Plasticity, ICTP 2014, 2014: 1744-1749.
    [22]
    Shutova V, Silbermann C B, Ihlemann J. Ductile damage model for metal forming simulations including refined description of void nucleation [J]. International Journal of Plasticity, 2015, 71: 195−217. doi:10.1016/j.ijplas.2015.03.003
    [23]
    Hu P, Shi D, Ying L, et al. The finite element analysis of ductile damage during hot stamping of 22MnB5 steel [J]. Materials & Design, 2015, 69: 141−152.
    [24]
    Shi D, Hu P, Ying L. Comparative study of ductile fracture prediction of 22MnB5 steel in hot stamping process [J]. The International Journal of Advanced Manufacturing Technology, 2016, 84: 895−906.
    [25]
    George R, Worswickm J, Detwiler D, et al. Impact testing of a hot-formed B-pillar with tailored properties: Experiments and simulation [J]. SAE International Journal of Materials and Manufacturing, 2013, 6: 157−162. doi:10.4271/2013-01-0608
    [26]
    Pack K, Marcadet S J. Numerical failure analysis of three-point bending on martensitic hat assembly using advanced plasticity and fracture models for complex loading [J]. International Journal of Solids and Structures, 2016, 85/86: 144−159.
    [27]
    Eller T K, Greve L, Aanerds M T, et al. Plasticity and fracture modeling of quench-hardenable boron steel with tailored properties [J]. Journal of Materials Processing Technology, 2014, 214: 1211−1227. doi:10.1016/j.jmatprotec.2013.12.015
    [28]
    Lin J G, Liu Y, Farrugia D C J, et al. Development of dislocation-based unified material model for simulating microstructure evolution in multipass hot rolling [J]. Philadelphia Magazine, 2005, 85: 1967−1987. doi:10.1080/14786430412331305285
    [29]
    Li N, Sun C, Guo N, et al. Experimental investigation of boron steel at hot stamping conditions [J]. Journal of Materials Processing Technology, 2016, 228: 2−10. doi:10.1016/j.jmatprotec.2015.09.043
    [30]
    Cao J, Lin J. A study on formulation of objective functions for determining material models [J]. International Journal of Mechanical Sciences, 2008, 50: 193−204. doi:10.1016/j.ijmecsci.2007.07.003
    [31]
    Shapiro A. Finite element modeling of hot stamping [J]. Steel Research International, 2009, 80: 658−664.
    [32]
    Zhuang W M, Wang P Y, Xie D X, et al. Experimental study and a damage model approach to determine the effect of hot forming deformation on the service performance of 22MnB5 steel [J]. Journal of Manufacturing Processes, 2019, 47: 10−21. doi:10.1016/j.jmapro.2019.09.018
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)/Tables(4)

    Article Metrics

    Article views (518) PDF downloads(205) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map