Welcome to Journal of Beijing Institute of Technology
Volume 29Issue 4
Dec. 2020
Turn off MathJax
Article Contents
Hewei Zhao. Terminal Angular Constraint Integrated Guidance and Control for Flexible Hypersonic Vehicle with Dead-Zone Input Nonlinearity[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2020, 29(4): 489-503. doi: 10.15918/j.jbit1004-0579.20032
Citation: Hewei Zhao. Terminal Angular Constraint Integrated Guidance and Control for Flexible Hypersonic Vehicle with Dead-Zone Input Nonlinearity[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2020, 29(4): 489-503.doi:10.15918/j.jbit1004-0579.20032

Terminal Angular Constraint Integrated Guidance and Control for Flexible Hypersonic Vehicle with Dead-Zone Input Nonlinearity

doi:10.15918/j.jbit1004-0579.20032
More Information
  • Corresponding author:Ph. D. E-mail:zhwsdyt@163.com
  • Received Date:2020-03-20
  • Publish Date:2020-12-30
  • This paper presents an integrated guidance and control model for a flexible hypersonic vehicle with terminal angular constraints. The integrated guidance and control model is bounded and the dead-zone input nonlinearity is considered in the system dynamics. The line of sight angle, line of sight angle rate, attack angle and pitch rate are involved in the integrated guidance and control system. The controller is designed with a backstepping method, in which a first order filter is employed to avoid the differential explosion. The full tuned radial basis function(RBF) neural network(NN) is used to approximate the system dynamics with robust item coping with the reconstruction errors, the exactitude model requirement is reduced in the controller design. In the last step of backstepping method design, the adaptive control with Nussbaum function is used for the unknown dynamics with a time-varying control gain function. The uniform ultimate boundedness stability of the control system is proved. The simulation results validate the effectiveness of the controller design.
  • loading
  • [1]
    Wu H, Liu Z, Guo L. Robust-gain fuzzy disturbance observer-based control design with adaptive bounding for a hypersonic vehicle [J]. IEEE Trans Fuzzy Syst, 2014, 22(6): 1401−1412. doi:10.1109/TFUZZ.2013.2292976
    [2]
    Hu C, Liu Y. Fuzzy adaptive nonlinear control based on dynamic surface control for hypersonic vehicle [J]. Control Decis, 2013, 28(12): 1849−1854.
    [3]
    Xu H, Mirmirani M, Ioannou P. Adaptive sliding mode control design for a hypersonic flight vehicle [J]. J Guid Control Dyn, 2004, 27(5): 829−838. doi:10.2514/1.12596
    [4]
    Wang N, Wu H N, Guo L. Coupling-observer-based nonlinear control for flexible air-breathing hypersonic vehicles [J]. Nonlinear Dyn, 2014, 78(3): 2141−2159. doi:10.1007/s11071-014-1572-1
    [5]
    Fiorentini L, Serrani A, Bolender M, et al. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles [J]. J Guid Contr Dyn, 2009, 32: 401−416.
    [6]
    Xu B. Robust adaptive neural control of flexible hypersonic flight vehicle with dead-zone input nonlinearity [J]. Nonlinear Dynamics, 2015, 80(3): 1509−1520. doi:10.1007/s11071-015-1958-8
    [7]
    Bu Xiangwei, Wu Xiaoyan, He Guangjun, et al. Novel adaptive neural control design for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation [J]. Acta Astronautica, 2016, 120: 75−86. doi:10.1016/j.actaastro.2015.12.004
    [8]
    Wang J H, Liu L H, Tang G J. Guidance and attitude control system design for hypersonic vehicle in dive phase [J]. Journal of Astronautics, 2016, 37(8): 964−973.
    [9]
    Zhao T, Wang P, Liu L H, et al. Integrated guidance and control with terminal angular constraint for hypersonic vehicle [J]. Control Theory and Applications, 2015, 32(7): 925−933.
    [10]
    Tournes C, Paschal N, Wilkerson P. Integrated terminal guidance and autopilot using subspace-stabilization[C]// AIAA Guidance, Navigation and Control Conference and Exhibit. Montreal, Canada: AIAA, 2001: 1-11.
    [11]
    Song H T, Zhang T, Zhang G L. Adaptive state feedback controller for three-dimensional integrated guidance and control of interceptor [J]. Journal of Aerospace Engineering, 2014, 228(10): 1693−1701.
    [12]
    Pu Z Q, Yuan R Y, Tan X M, et al. An integrated approach to hypersonic entry attitude control [J]. International Journal of Automation and Computing, 2014, 11(1): 39−50. doi:10.1007/s11633-014-0764-y
    [13]
    Lu P, Doman D B, Schierman J D. Adaptive terminal guidance for hypervelocity impact in specified direction, AIAA-2005-6059[R]. Reston: AIAA, 2005.
    [14]
    Liu L H, Zhu J W, Tang G J, et al. Diving guidance via feedback linearization and sliding mode control [J]. Aerospace Science and Technology, 2015, 41: 16−23. doi:10.1016/j.ast.2014.11.014
    [15]
    Fidan B, Mirmirani M, Ioannou P A I. Flight dynamics and control of air-breathing hypersonic vehicles: Review and new directions[C]//12 thAIAA International Space Planes and Hypersonic Systems and Technologies. Reston: AIAA, 2003: 563-571.
    [16]
    Richie G. The common aero vehicle: Space delivery system of future, AIAA-1999-4435[R]. Reston: AIAA, 1999.
    [17]
    Schierman J D, Ward D G, Hull J R, et al. Integrated adaptive guidance and control for reentry vehicles with flight-test results [J]. Journal of Guidance, Control, and Dynamics, 2004, 27(6): 975−988. doi:10.2514/1.10344
    [18]
    Bechlioulis C, Rovithakis G. A low-complexity global approximation-free control scheme with prescribed performance for unknown pure feedback systems [J]. Automatica, 2014, 50: 1217−1226. doi:10.1016/j.automatica.2014.02.020
    [19]
    Bechlioulis C, Rovithakis G. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance [J]. IEEE Trans Autom Control, 2008, 53(9): 2090−2099. doi:10.1109/TAC.2008.929402
    [20]
    Zhang L L, Tong S C, Li Y M. Prescribed performance adaptive fuzzy output-feedback control of uncertain nonlinear systems with unmodeled dynamics [J]. Nonlinear Dyn, 2014, 77: 1653−1665. doi:10.1007/s11071-014-1407-0
    [21]
    Na J, Chen Q, Ren X M, et al. Adaptive prescribed performance motion control of servo mechanisms with friction compensation [J]. IEEE Trans Ind Electron, 2014, 61(1): 486−494. doi:10.1109/TIE.2013.2240635
    [22]
    Li Y M, Tong S C. Prescribed performance adaptive fuzzy output-feedback dynamic surface control for nonlinear large-scale systems with time delays [J]. Inf Sci, 2015, 292: 125−142. doi:10.1016/j.ins.2014.08.060
    [23]
    Huang Xiaoqin, Chen Li. Anti-dead-zone integral sliding control and active vibration suppression of a free-floating space robot with elastic base and flexible links [J]. Journal of Beijing Institute of Technology, 2020, 29(1): 120−128.
    [24]
    Ji Haibo, Wang Lei. Trajectory tracking strategy for gliding hypersonic vehicle with aileron stuck at an unknown angle [J]. Journal of Beijing Institute of Technology, 2019, 28(3): 447−455.
    [25]
    Qin Kongjian, Liu Yu, Hu Xi. Variable parameter self-adaptive control strategy based on driving condition identification for plug-in hybrid electric bus [J]. Journal of Beijing Institute of Technology, 2019, 28(1): 162−170.
    [26]
    Geng B L, Hu Y A, Li J, et al. Prescribed performance backstepping control of uncertain systems with unknown control gains [J]. Acta Autom Sin, 2014, 40(11): 2521−2529.
    [27]
    Zhao Hewei, Liang Yong, Yang Xiuxia, et al. Prescribed performance fine attitude control for a flexible hypersonic vehicle with unknown initial errors [J]. Asian Journal of Control, 2018, 20(6): 2357−2369. doi:10.1002/asjc.1735
    [28]
    Xu B, Huang X, Wang D, et al. Dynamic surface control of constrained hypersonic flight models with parameter estimation and actuator compensation [J]. Asian J Control, 2014, 16(1): 162−174. doi:10.1002/asjc.679
    [29]
    Xu B, Sun F, Yang C, et al. Adaptive discrete-time controller design with neural network for hypersonic flight vehicle via back-stepping [J]. Int J Control, 2011, 84(9): 1543−1552. doi:10.1080/00207179.2011.615866
    [30]
    Xu B, Gao D, Wang S. Adaptive neural control based on HGO for hypersonic flight vehicle [J]. Sci China Inf Sci, 2011, 54(3): 511−520. doi:10.1007/s11432-011-4189-8
    [31]
    Zhao Hewei, Yang Xiuxia, Shen Rusong, et al. Prescribed performance fine attitude control for aeroelastic hypersonic vehicle [J]. Acta Armamentarii, 2017, 38(3): 501−511.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)

    Article Metrics

    Article views (285) PDF downloads(40) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map