Welcome to Journal of Beijing Institute of Technology
Volume 29Issue 4
Dec. 2020
Turn off MathJax
Article Contents
Tao Wang, Lei Zhu, Changhong Wang, Mingming Liu, Ning Wang, Lingchao Qin, Hao Wang, Jianbo Lei, Jie Tang, Jun Wu. Microstructure Evolution and Dynamic Mechanical Properties of Laser Additive Manufacturing Ti-6Al-4V Under High Strain Rate[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2020, 29(4): 568-580. doi: 10.15918/j.jbit1004-0579.20064
Citation: Tao Wang, Lei Zhu, Changhong Wang, Mingming Liu, Ning Wang, Lingchao Qin, Hao Wang, Jianbo Lei, Jie Tang, Jun Wu. Microstructure Evolution and Dynamic Mechanical Properties of Laser Additive Manufacturing Ti-6Al-4V Under High Strain Rate[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2020, 29(4): 568-580.doi:10.15918/j.jbit1004-0579.20064

Microstructure Evolution and Dynamic Mechanical Properties of Laser Additive Manufacturing Ti-6Al-4V Under High Strain Rate

doi:10.15918/j.jbit1004-0579.20064
Funds:the United National Science Funds and Civil Aviation Funds (U1633104); Tianjin Science Funds for the Special of Science & Technology (17JCTPJC51800); Open Funds of the State Key Lab of Digital Manufacturing Equipment & Technology (DMETKF2017018); the Scientific Research Project of Tianjin Educational Committee (2019KJ119); the Fundamental Research Funds for the Central Universities (3122017017); Research Starting Funds of Civil Aviation University of China (09QD05S)
More Information
  • Corresponding author:associate professor E-mail:hbgdwh@vip.126.com
  • Received Date:2020-06-23
  • Publish Date:2020-12-30
  • The dynamic mechanical properties of the Ti-6Al-4V (TC4) alloy prepared by laser additive manufacturing (LAM-TC4) under the high strain rate (HSR) are proposed. The dynamic compression experiments of LAM-TC4 are conducted with the split Hopkinson pressure bar (SHPB) equipment. The results show that as the strain rate increases, the widths of the adiabatic shear band (ASB), the micro-hardness, the degree of grain refinement near the ASB, and the dislocation density of grains grow gradually. Moreover, the increase of dislocation density of grains is the root factor in enhancing the yield strength of LAM-TC4. Meanwhile, the heat produced from the distortion and dislocations of grains promotes the heat softening effect favorable for the recrystallization of grains, resulting in the grain refinement of ASB. Furthermore, the contrastive analysis between LAM-TC4 and TC4 prepared by forging (F-TC4) indicates that under the HSR, the yield strength of LAM-TC4 is higher than that of F-TC4.
  • loading
  • [1]
    Lee C S, Lee S B, Kim J S. Mechanical and microstructural analysis on the superplastic deformation behavior of Ti–6Al–4V alloy [J]. International Journal of Mechanical Sciences, 2000, 42(8): 1555−1569. doi:10.1016/S0020-7403(99)00090-9
    [2]
    Patankar S N, Eseobedo J P, Field D P, et al. Superior superplastic behavior in fine-grained Ti–6Al–4V sheet [J]. Journal of Alloys and Compounds, 2002, 345(1): 221−227.
    [3]
    Reddy N S, Lee Y H, Kim J H, et al. High temperature deformation behavior of Ti-6Al-4V alloy with and equiaxed microstructure: a neural networks analysis [J]. Metals and Materials International, 2008, 14(2): 213−221. doi:10.3365/met.mat.2008.04.213
    [4]
    Lu Jinzhong, Lu Haifei, Xu Xiang, et al. High-performance integrated additive manufacturing with laser shock peening–induced microstructural evolution and improvement in mechanical properties of Ti6Al4V alloy components [J]. International Journal of Machine Tools and Manufacture, 2020, 148(1): 103475.
    [5]
    Harding T S, Jones J W. Behavior of gamma TiAl subjected to impact damage and elevated temperature fatigue [J]. Scripta Metallurgica, 1999, 42(2): 129−135. doi:10.1016/S1359-6462(99)00319-X
    [6]
    Toft H S, Branner K, Berring P, et al. Defect distribution and reliability assessment of wind turbine blades [J]. Engineering Structures, 2010, 33(1): 171−180.
    [7]
    Zhang Yancheng, Urquidi-Macdonald M, Engelhardt G R, et al. Development of localized corrosion damage on low pressure turbine disks and blades. Ⅲ: Application of damage function analysis to the prediction of damage [J]. Electrochimica Acta, 2012, 69: 19−29. doi:10.1016/j.electacta.2012.01.024
    [8]
    Lu Jinzhong, Wu Liujun, Sun Guifang, et al. Microstructural response and grain refinement mechanism of commercially pure titanium subjected to multiple laser shock peening impacts [J]. Acta Materialia, 2017, 127(4): 252−266.
    [9]
    Vilar R, Santos E C, Ferreira P N, et al. Structure of NiCrAlY coatings deposited on single-crystal alloy turbine blade material by laser cladding [J]. Acta Materialia, 2009, 57(18): 5292−5302. doi:10.1016/j.actamat.2009.06.049
    [10]
    Lin Chunming. Parameter optimization of laser cladding process and resulting microstructure for the repair of tenon on steam turbine blade [J]. Vacuum, 2015, 115: 117−123. doi:10.1016/j.vacuum.2015.02.021
    [11]
    Okuno T, Kaneno Y, Yamaguchi T, et al. Microstructures and hardness properties of laser clad Ni base two-phase intermetallic alloy coating [J]. Journal of Materials Research, 2017, 32(24): 4531−4540. doi:10.1557/jmr.2017.352
    [12]
    Gong Xinyong, Liu Mingkun, Li Yan, et al. Research on repair of TC11 titanium alloy component by laser melting deposition process [J]. Chinese Journal of Lasers, 2012, 39(02): 85−90.
    [13]
    Kim H I, Park H S, Koo J M, et al. Evaluation of welding characteristics for manual overlay and laser cladding materials in gas turbine blades [J]. Journal of Mechanical Science and Technology, 2012, 26(7): 2015−2018. doi:10.1007/s12206-012-0505-5
    [14]
    Gao Shiyou, Zhang Yongzhong, Shi Likai. Mechanical properties of TC4 alloy fabricated by laser direct deposition [J]. Chinese Journal of Rare Metals, 2004(1): 29−33.
    [15]
    Li Jing, Lin Xin, Qian Yuanhong, et al. Study on microstructure and property of laser solid forming TC4 titanium alloy [J]. Chinese Journal of Lasers, 2014, 41(11): 109−113.
    [16]
    Follansbee P S, Gray G T. An analysis of the low temperature, low and high strain-rate deformation of Ti-6Al-4V [J]. Metallurgical Transactions A, 1989, 20(5): 863−874. doi:10.1007/BF02651653
    [17]
    Semiatin S L, Bieler T R. The effect of alpha platelet thickness on plastic flow during hot working of TI–6Al–4V with a transformed microstructure [J]. Acta Materialia, 2001, 49(17): 3565−3573. doi:10.1016/S1359-6454(01)00236-1
    [18]
    Sutang C, Hsienlung T, Woeishyan L. Effects of strain rate and temperature on the deformation and fracture behaviour of titanium alloy [J]. Materials Transactions, 2007, 48(9): 2525−2533. doi:10.2320/matertrans.MRA2007607
    [19]
    Luo Yumeng, Liu Jinxu, Li Shukui. Anisotropy of mechanical properties and influencing factors of hot rolling TC4 titanium alloy [J]. Rare Metal Materials and Engineering, 2014, 43(11): 2692−2696.
    [20]
    Liu Qinghua, Hui Songxiao, Ye Wenjun. Effect of the content of alloying elements on dynamic mechanical properties of TC4 alloy [J]. Rare Metal Materials and Engineering, 2013, 42(7): 1464−1468.
    [21]
    Luo Jiao, Wang Linfeng, Li Miaoquan, et al. Formation of adiabatic shear band and deformation mechanisms during warm compression of Ti–6Al–4V alloy [J]. Rare Metals, 2016, 35(8): 598−605. doi:10.1007/s12598-016-0771-y
    [22]
    Zhou Tianfeng, Wu Junjie, Che Jiangtao, et al. Dynamic shear characteristics of titanium alloy Ti-6Al-4V at large strain rates by the split Hopkinson pressure bar test [J]. International Journal of Impact Engineering, 2017, 109: 167−177. doi:10.1016/j.ijimpeng.2017.06.007
    [23]
    Li Penghui, Guo Weiguo, Huang Weidong, et al. Thermomechanical response of 3D laser-deposited Ti–6Al–4V alloy over a wide range of strain rates and temperatures [J]. Materials Science & Engineering A, 2015, 647: 34−42.
    [24]
    Wang Liu, Wang Yingchun, Zhilyaev A P, et al. Dynamic compressive behavior of ultrafine-grained pure Ti at elevated temperatures after processing by ECAP [J]. Journal of Materials Science, 2014, 49(19): 6640−6647. doi:10.1007/s10853-014-8306-0
    [25]
    Peries J, Verleysen P, Degrieck J, et al. The use of hat-shaped specimens to study the high strain rate shear behaviour of Ti–6Al–4V [J]. International Journal of Impact Engineering, 2009, 37(6): 703−714.
    [26]
    Pérez-Prado M T, Hines J, Vecchio K S. Microstructural evolution in adiabatic shear bands in Ta and Ta–W alloys [J]. Acta Materialia, 2001, 49(15): 2905−2917. doi:10.1016/S1359-6454(01)00215-4
    [27]
    Lee D G, Lee Y H, Lee S, et al. Dynamic deformation behavior and ballistic impact properties of Ti-6Al-4V alloy having equiaxed and bimodal microstructures [J]. Metallurgical and Materials Transactions A, 2004, 35(10): 3103−3112. doi:10.1007/s11661-004-0055-2
    [28]
    Zhan Hongyi, Wang Gui, Kent D, et al. Constitutive modelling of the flow behaviour of a β titanium alloy at high strain rates and elevated temperatures using the Johnson-Cook and modified Zerilli-Armstrong models [J]. Materials Science & Engineering A, 2014, 612: 71−79.
    [29]
    Wang Yubo, Weidong, Sun Xin, et al. The microstucture characterization of adiabatic shearing band in Ti-17 alloy at high strain rates and elevated temperatures [J]. Materials Science & Engineering A, 2016, 677: 325−331.
    [30]
    Zheng Youping, Zeng Weidong, Wang Yubo, et al. High strain rate compression behavior of a heavily stabilized beta titanium alloy: Kink deformation and adiabatic shearing [J]. Journal of Alloys and Compounds, 2017, 708: 84−92. doi:10.1016/j.jallcom.2017.02.284
    [31]
    Yang Yang, Wang Bingfeng. Dynamic recrystallization in adiabatic shear band in α-titanium [J]. Materials Letters, 2006, 60(17): 2198−2202.
    [32]
    Lin Yongcheng, Dong Wenyong, Zhou Mi, et al. A unified constitutive model based on dislocation density for an Al-Zn-Mg-Cu alloy at time-variant hot deformation conditions [J]. Materials Science & Engineering A, 2018, 718: 165−172.
    [33]
    Lin Yongcheng, Wen Dongxu, Huang Yuanchun, et al. A unified physically based constitutive model for describing strain hardening effect and dynamic recovery behavior of a Ni-based superalloy [J]. Journal of Materials Research, 2015, 30(24): 3784−3794. doi:10.1557/jmr.2015.368
    [34]
    Lee W S, Chen T H, Huang S C. Impact deformation behaviour of Ti–6Al–4V alloy in the low-temperature regime [J]. Journal of Nuclear Materials, 2010, 402(1): 1−7. doi:10.1016/j.jnucmat.2010.04.013
    [35]
    Shen Tongde, Schwarz R B, Feng S, et al. Effect of solute segregation on the strength of nanocrystalline alloys: Inverse Hall–Petch relation [J]. Acta Materialia, 2007, 55(15): 5007−5013. doi:10.1016/j.actamat.2007.05.018
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)/Tables(1)

    Article Metrics

    Article views (512) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map