Welcome to Journal of Beijing Institute of Technology
Volume 30Issue zk
Jun. 2021
Turn off MathJax
Article Contents
Lijun Feng, Hao Yan. Nonlinear Adaptive Robust Control of Valve-Controlled Symmetrical Cylinder System[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2021, 30(zk): 171-178. doi: 10.15918/j.jbit1004-0579.20069
Citation: Lijun Feng, Hao Yan. Nonlinear Adaptive Robust Control of Valve-Controlled Symmetrical Cylinder System[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2021, 30(zk): 171-178.doi:10.15918/j.jbit1004-0579.20069

Nonlinear Adaptive Robust Control of Valve-Controlled Symmetrical Cylinder System

doi:10.15918/j.jbit1004-0579.20069
Funds:the National Natural Science Foundation of China(51775032); Foundation of Key Laboratory of Vehicle Advanced Manufacturing, Measuring and Control Technology, Beijing Jiaotong University, Ministry of Education, China
More Information
  • Corresponding author:associate professor, Ph.D. E-mail:hyan@bjtu.edu.cn
  • Received Date:2020-06-30
  • Publish Date:2021-06-30
  • A nonlinear adaptive robust control method based on a differentiable LuGre friction model is proposed for the problems of uncertain parameters, nonlinear friction and time-varying disturbances in valve-controlled symmetrical cylinder system. The proposed method can effectively compensate the uncertain nonlinear characteristics and external disturbances in the system by combining adaptive robust control with state and disturbance observations, as well as sliding mode differential technique. The global stability and boundedness of the proposed control method are proven by applying the Lyapunov theory. The simulation results show that this control method can deal with the problems of the uncertain nonlinearities and disturbances within the system. The proposed control method also presents excellent dynamic performance and robustness.
  • loading
  • [1]
    Mattila J, Koivumaki J, Caldwell D G, et al. A survey on control of hydraulic robotic manipulators with projection to future trends [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(2): 669−680. doi:10.1109/TMECH.2017.2668604
    [2]
    Sun W, Pan H, Gao H. Filter-based adaptive vibration control for active vehicle suspensions with electrohydraulic actuators [J]. IEEE Transactions on Vehicular Technology, 2016, 65(6): 4619−4626. doi:10.1109/TVT.2015.2437455
    [3]
    Wang C, Jiao Z X, Wu S, et al. A practical nonlinear robust control approach of electro-hydraulic load simulator [J]. Chinese Journal of Aeronautics, 2014, 27(3): 735−744. doi:10.1016/j.cja.2014.04.011
    [4]
    Yao J, Jiao Z, Ma D, et al. High-accuracy tracking control of hydraulic rotary actuators with modeling uncertainties [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(2): 633−641. doi:10.1109/TMECH.2013.2252360
    [5]
    Guan C, Pan S. Adaptive sliding mode control of electro-hydraulic system with nonlinear unknown parameters [J]. Control Engineering Practice, 2008, 16(11): 1275−1284. doi:10.1016/j.conengprac.2008.02.002
    [6]
    Ahn K K, Nam D N C, Jin M. Adaptive backstepping control of an electrohydraulic actuator [J]. IEEE/ASME Transactions on Mechatronics, 2014, 19(3): 987−995. doi:10.1109/TMECH.2013.2265312
    [7]
    Kim H M, Park S H, Lee J M, et al. A robust control of electro hydrostatic actuator using the adaptive back-stepping scheme and fuzzy neural networks [J]. International Journal of Precision Engineering and Manufacturing, 2010, 11(2): 227−236. doi:10.1007/s12541-010-0026-z
    [8]
    Yao B, Tomizuka M. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form [J]. Automatica, 1997, 33(5): 893−900. doi:10.1016/S0005-1098(96)00222-1
    [9]
    Krstic M, Kanellakopoulos I, Kokotovic P V. Nonlinear and adaptive control design[M]. New York: John Wiley & Sons, 1995.
    [10]
    Meng D Y, Tao G L, Liu H, et al. Adaptive robust motion trajectory tracking control of pneumatic cylinders with LuGre model-based friction compensation [J]. Chinese Journal of Mechanical Engineering, 2014, 27(4): 802−815. doi:10.3901/CJME.2014.0430.085
    [11]
    Yang Z, Fukushima Y, Qin P. Decentralized adaptive robust control of robot manipulators using disturbance observers [J]. IEEE Transactions on Control Systems Technology, 2012, 20(5): 1357−1365. doi:10.1109/TCST.2011.2164076
    [12]
    Yao J, Jiao Z, Ma D. Extended-state-observer-based output feedback nonlinear robust control of hydraulic systems with backstepping [J]. IEEE Transactions on Industrial Electronics, 2014, 61(11): 6285−6293. doi:10.1109/TIE.2014.2304912
    [13]
    Makkar C, Dixon W E, Sawyer W G, et al. A new continuously differentiable friction model for control systems design[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Monterey, CA: IEEE, 2005.
    [14]
    Tan Y, Chang J, Tan H. Adaptive backstepping control and friction compensation for AC servo with inertia and load uncertainties [J]. IEEE Transactions on Industrial Electronics, 2003, 50(5): 944−952. doi:10.1109/TIE.2003.817574
    [15]
    Yin T T, Jia F X, Yu J Y, et al. Robust Adaptive control of roll position of fixed rudder for dual-spin projectile with improved LuGre friction model [J]. Acta Armamentarii, 2019, 40(12): 2425−2432.
    [16]
    Guan C, Pan S. Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with unknown nonlinear parameters [J]. IEEE Transactions on Control Systems Technology, 2008, 16(3): 434−445. doi:10.1109/TCST.2007.908195
    [17]
    Li H R. Hydraulic control system[M]. Beijing: National Defense Industry Press, 1990. (in Chinese)
    [18]
    Shtessel Y, Edwards C, Fridman L, et al. Sliding mode control and observation[M]. New York: Springer, 2014.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)/Tables(1)

    Article Metrics

    Article views (377) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map