Welcome to Journal of Beijing Institute of Technology
Volume 30Issue zk
Jun. 2021
Turn off MathJax
Article Contents
Fuhui Guo, Pingli Lu. Hypersonic Re-entry Vehicle Fault-Tolerant Control Against Actuator Failure via Integral Sliding Mode[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2021, 30(zk): 111-120. doi: 10.15918/j.jbit1004-0579.20104
Citation: Fuhui Guo, Pingli Lu. Hypersonic Re-entry Vehicle Fault-Tolerant Control Against Actuator Failure via Integral Sliding Mode[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2021, 30(zk): 111-120.doi:10.15918/j.jbit1004-0579.20104

Hypersonic Re-entry Vehicle Fault-Tolerant Control Against Actuator Failure via Integral Sliding Mode

doi:10.15918/j.jbit1004-0579.20104
Funds:the National Natural Science Foundation of China(61433003, 60904003)
More Information
  • Corresponding author:E-mail:pinglilu@bit.edu.cn
  • Received Date:2020-08-07
  • Publish Date:2021-06-30
  • A fault-tolerant control (FTC) scheme is proposed based on integral sliding mode(ISM) for attitude control of hypersonic re-entry vehicle (HRV) under partial loss of actuator effectiveness. First, the inner/outer loop mathematical model of HRV in the present of actuator failure is given with specific analysis on torque. Then prescribed performance approach is introduced to the ISM controller design by error transformation. Specifically, the transformation error rather than tracking error is chosen as the sliding variable to establish the sliding mode surface and reaching law. As a result, the attitude tracking error of HRV is limited into the expected range. Meanwhile, the transient process and the steady state behavior are both considered. Considering that the unknown fault information of actuator can cause adverse effect on HRV, an extended state observer(ESO) is adopted to estimate the unknown actuator failure. Thus the observer result is served as compensation for the loss of the controlled system performance. Simulation results show that the proposed scheme can fulfil the tracking task with prescribed performance.
  • loading
  • [1]
    Zhang Y, Jiang J. Bibliographical review on reconfigurable fault-tolerant control systems [J]. Annual Reviews in Control, 2008, 32(2): 229−252. doi:10.1016/j.arcontrol.2008.03.008
    [2]
    Zhai R Y, Qi R Y, Jiang B. Adaptive sliding mode fault-tolerant control for hypersonic vehicle based on radial basis function neural networks [J]. International Journal of Advanced Robotic Systems, 2017, 14(3): 1−11.
    [3]
    An H, Liu J X, Wang C H, et al. Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle [J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(3): 1680−1691. doi:10.1109/TMECH.2015.2507186
    [4]
    Hu X X, Karimi H R, Wu L G, et al. Model predictive control-based non-linear fault tolerant control for air-breathing hypersonic vehicles [J]. Control Theory & Applications IET, 2014, 8(13): 1147−1153.
    [5]
    Shen Q K, Jiang B, Cocquempot V. Fuzzy logic system-based adaptive fault tolerant control for near space vehicle attitude dynamics with actuator faults [J]. IEEE Transactions on Fuzzy Systems, 2013, 21(2): 289−300. doi:10.1109/TFUZZ.2012.2213092
    [6]
    Wang T, Xie W F, Zhang Y M. Sliding mode fault tolerant control dealing with modeling uncertainties and actuator faults [J]. ISA Transactions, 2012, 51(3): 386−392. doi:10.1016/j.isatra.2012.02.003
    [7]
    Zhang Y, Tang S J, Guo J. Adaptive-gain fast super-twisting sliding mode fault tolerant control for a reusable launch vehicle in reentry phase [J]. ISA Transactions, 2017, 71(Pt 2): 380−390.
    [8]
    Li P, Yu X, Zhang Y, et al. Adaptive multivariable integral TSMC of a hypersonic gliding vehicle with actuator faults and model uncertainties [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(6): 2723−2735. doi:10.1109/TMECH.2017.2756345
    [9]
    Ming C, Sun R S, Zhu B. Nonlinear fault-tolerant control with prescribed performance for air-breathing supersonic missiles [J]. Journal of Spacecraft & Rockets, 2017, 54(5): 1092−1099.
    [10]
    Zhao J, Jiang B, Shi P, et al. Adaptive dynamic sliding mode control for near space vehicles under actuator faults [J]. Circuits Systems & Signal Processing, 2013, 32(5): 2281−2296.
    [11]
    Bechlioulis C P, Rovithakis G A. Prescribed performance adaptive control of SISO feedback linearizable systems with disturbances[C]//Mediterranean Conference on Control and Automation, 2008: 1035-1040.
    [12]
    Bechlioulis C P, Rovithakis G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance [J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090−2099. doi:10.1109/TAC.2008.929402
    [13]
    Liu J X, An H, Gao Y B, et al. Adaptive control of hypersonic flight vehicles with limited angle-of-attack [J]. IEEE/ASME Transactions on Mechatronics, 2018, 23(2): 883−894. doi:10.1109/TMECH.2018.2800089
    [14]
    Liu Y J, Zeng Q, Tong S, et al. Actuator failure compensation-based adaptive control of active suspension systems with prescribed performance [J]. IEEE Transactions on Industrial Electronics, 2019, 67(8): ‏ 7044−7053.
    [15]
    Li X G, Li G, Zhao Y, et al. Fuzzy-approximation-based prescribed performance control of air-breathing hypersonic vehicles with input constraints [J]. Science Progress, 2019, 103(1): 1−40.
    [16]
    Shaughnessy J D, Pinckney S Z, McMinn J D. Hypersonic vehicle simulation model: Winged-cone configuration, NASA-TM-102610[R]. USA: NASA Langley Research Center, 1990.
    [17]
    Zhang J, Wang M. A nonlinear constraint control method for reentry hypersonic vehicles [J]. Aerospace Control and Application, 2011(6): 35−40.
    [18]
    Recasens J, Chu Q, Mulder J. Robust model predictive control of a feedback linearized system for a lifting-body re-entry vehicle[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit. California: AIAA, 2005: 6147.
    [19]
    Han J Q, Zhang R. Error analysis of the second order ESO [J]. Journal of Systems Science and Mathematical Sciences, 1999(4): 465−471.
    [20]
    Wang W W, Gao Z Q. A comparison study of advanced state observer design techniques[C]//Proceedings of American Control Conference, 2003(6): 4754-4759.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)/Tables(1)

    Article Metrics

    Article views (404) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map