Welcome to Journal of Beijing Institute of Technology
Volume 30Issue zk
Jun. 2021
Turn off MathJax
Article Contents
Fan Zhi, Yigang Zhang, Xiang Zhou, Jing Zhang, Wu Lu. New Model-Based Method to Improve the Moving Performance of the Planar Near-Field Scanning Frame[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2021, 30(zk): 92-102. doi: 10.15918/j.jbit1004-0579.20125
Citation: Fan Zhi, Yigang Zhang, Xiang Zhou, Jing Zhang, Wu Lu. New Model-Based Method to Improve the Moving Performance of the Planar Near-Field Scanning Frame[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2021, 30(zk): 92-102.doi:10.15918/j.jbit1004-0579.20125

New Model-Based Method to Improve the Moving Performance of the Planar Near-Field Scanning Frame

doi:10.15918/j.jbit1004-0579.20125
More Information
  • Corresponding author:engineer, Ph.D. E-mail:493818231@qq.com
  • Received Date:2020-09-18
  • Publish Date:2021-06-30
  • A new model-based method is proposed to improve the moving performance of the planar near-field scanning frame. First, the geometric error model of the planar near-field scanning frame is established based on homogeneous coordinate transformation and multi-body system theory. Then, 21 underdetermined parameters in the geometric error model are derived by using the laser interferometer measurement system with unique light path and configurations. Based on the established error model, online error compensation in combination with structural optimization are proposed to reduce geometric errors efficiently. Finally, the proposed method is utilized to derive a novel planar near-field scanning frame. Scanning planeness in XYplane with z= 10 mm is calculated by using the Monte Carlo simulation method, results show that the calculated scanning planeness satisfies demands for the planar near-filed scanning frame, which validates the effectiveness of the proposed method.
  • loading
  • [1]
    Zhang G X, Zhang H Y, Guo J B, et al. Error compensation of cylindrical coordinate measuring machines [J]. CIRP Annals - Manufacturing Technology, 2010, 59(1): 501−504. doi:10.1016/j.cirp.2010.03.126
    [2]
    Ni J. CNC machine accuracy enhancement through real-time error compensation [J]. Journal of Manufacturing Science and Engineering, 1997, 119(4): 717−725.
    [3]
    Pereira P H, Giacomo B D. Thermal error evaluation and modelling of a CNC cylindrical grinding machine [J]. Metrologia, 2008, 45(2): 217−222. doi:10.1088/0026-1394/45/2/011
    [4]
    Abuaniza A, Fletcher S, Mian N S, et al. Thermal error modelling of a CNC machine tool feed drive system using FEA method [J]. International Journal of Engineering Research and Technology, 2016, 5(3): 118−126.
    [5]
    Lei W T, Hsu Y Y. Accuracy enhancement of five-axis CNC machines through real-time error compensation [J]. International Journal of Machine Tools and Manufacture, 2003, 43(9): 871−877. doi:10.1016/S0890-6955(03)00089-0
    [6]
    Raksiri C, Parnichkun M. Geometric and force errors compensation in a 3-axis CNC milling machine [J]. International Journal of Machine Tools and Manufacture, 2004, 44(12-13): 1283−1291. doi:10.1016/j.ijmachtools.2004.04.016
    [7]
    Du Z, Zhang S, Hong M. Development of a multi-step measuring method for motion accuracy of NC machine tools based on cross grid encoder [J]. International Journal of Machine Tools and Manufacture, 2010, 50(3): 270−280. doi:10.1016/j.ijmachtools.2009.11.010
    [8]
    Mekid S, Ogedengbe T. A review of machine tool accuracy enhancement through error compensation in serial and parallel kinematic machines [J]. International Journal of Precision Technology, 2010, 1(3/4): 251. doi:10.1504/IJPTECH.2010.031657
    [9]
    Lee J H, Yang S H. Statistical optimization and assessment of a thermal error model for CNC machine tools [J]. International Journal of Machine Tools and Manufacture, 2002, 42(1): 147−155. doi:10.1016/S0890-6955(01)00110-9
    [10]
    Ouafi A E, Guillot M, Bedrouni A. Accuracy enhancement of multi-axis CNC machines through on-line neurocompensation [J]. Journal of Intelligent Manufacturing, 2000, 11(6): 535−545. doi:10.1023/A:1026500422130
    [11]
    Shuhe L. Improving accuracy of CNC machine tools through compensation for thermal errors [J]. Chinese Journal of Mechanical Engineering, 1997, 4: 71−75.
    [12]
    Donmez M A, Blomquist, D S, Hocken R J, et al. A general methodology for machine tool accuracy enhancement by error compensation [J]. Precision Engineering, 1986, 8(4): 187−196. doi:10.1016/0141-6359(86)90059-0
    [13]
    Breaz R E, Bologa O C, Racz G S. Improving CNC machine tools accuracy using modeling and computer simulation techniques [J]. IFAC Proceedings Volumes, 2007, 40(18): 881−886. doi:10.3182/20070927-4-RO-3905.00146
    [14]
    Abdulshahed A M, Longstaff A P, Fletcher S. The application of anfis prediction models for thermal error compensation on CNC machine tools [J]. Applied Soft Computing, 2014, 27(7): 158−168.
    [15]
    Zhu S, Ding G, Qin S, et al. Integrated geometric error modeling, identification and compensation of CNC machine tools [J]. International Journal of Machine Tools and Manufacture, 2012, 52(1): 24−29. doi:10.1016/j.ijmachtools.2011.08.011
    [16]
    Khan A W, Chen W. A methodology for systematic geometric error compensation in five-axis machine tools [J]. The International Journal of Advanced Manufacturing Technology, 2011, 53(5-8): 615−628. doi:10.1007/s00170-010-2848-3
    [17]
    Jiang X, Cripps R J. A method of testing position independent geometric errors in rotary axes of a five-axis machine tool using a double ball bar [J]. International Journal of Machine Tools and Manufacture, 2015, 89: 151−158. doi:10.1016/j.ijmachtools.2014.10.010
    [18]
    Miao E M, Gong Y Y, Niu P C, et al. Robustness of thermal error compensation modeling models of CNC machine tools [J]. International Journal of Advanced Manufacturing Technology, 2013, 69(9-12): 2593−2603. doi:10.1007/s00170-013-5229-x
    [19]
    Ouafi A E, Guillot M, Barka N. An integrated modeling approach for ANN-based real-time thermal error compensation on a CNC turning center [J]. Advanced Materials Research, 2013, 664: 907−915. doi:10.4028/www.scientific.net/AMR.664.907
    [20]
    Liao T T. Modeling and analysis of laser shaft alignment using 4×4 homogeneous coordinate transformation matrix [J]. Measurement, 2009, 42(1): 157−163. doi:10.1016/j.measurement.2008.05.001
    [21]
    Tsutsumi M, Tone S, Kato N, et al. Enhancement of geometric accuracy of five-axis machining centers based on identification and compensation of geometric deviations [J]. International Journal of Machine Tools and Manufacture, 2013, 68: 11−20. doi:10.1016/j.ijmachtools.2012.12.008
    [22]
    Lee R S, She C H. Developing a postprocessor for three types of five-axis machine tools [J]. International Journal of Advanced Manufacturing Technology, 1997, 13(9): 658−665. doi:10.1007/BF01350824
    [23]
    Cruz-Hernandez J M, Hayward V. Phase control approach to hysteresis reduction [J]. IEEE Transactions on Control Systems Technology, 2001, 9(1): 17−26. doi:10.1109/87.896742
    [24]
    Ouafi A E, Guillot M. A comprehensive approach for thermal error model optimization for ANN-based real-time error compensation in cnc machine tools [J]. Applied Mechanics and Materials, 2012, 232: 639−647. doi:10.4028/www.scientific.net/AMM.232.639
    [25]
    Aguado S, Samper D, Santolaria J, et al. Identification strategy of error parameter in volumetric error compensation of machine tool based on laser tracker measurements [J]. International Journal of Machine Tools and Manufacture, 2012, 53(1): 160−169. doi:10.1016/j.ijmachtools.2011.11.004
    [26]
    Yao X P. Positioning error of feed axis decouple-separating modeling and compensating research for CNC machine tools [J]. Journal of Mechanical Engineering, 2016, 52(1): 184.
    [27]
    Yang J, Yuan J, Ni J. Thermal error mode analysis and robust modeling for error compensation on a CNC turning center [J]. International Journal of Machine Tools and Manufacture, 1999, 39(9): 1367−1381. doi:10.1016/S0890-6955(99)00008-5
    [28]
    Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools — A review: Part I: geometric, cutting-force induced and fixture-dependent errors [J]. International Journal of Machine Tools and Manufacture, 2000, 40(9): 1235−1256. doi:10.1016/S0890-6955(00)00009-2
    [29]
    Lin W, Fu J, Xu Y, et al. Thermal error prediction of numerical control machine tools based on least squares support vector machines [J]. Journal of Zhejiang University, 2008, 42(6): 906−908.
    [30]
    Eladawi A E, Gadelmawla E S, Elewa, et al. An application of computer vision for programming computer numerical control machines [J]. Proceedings of the Institution of Mechanical Engineers Part B Journal of Engineering Manufacture, 2003, 217(9): 1315−1324. doi:10.1243/095440503322420241
    [31]
    Soori M, Arezoo B, Habibi M. Tool deflection error of three-axis computer numerical control milling machines, monitoring and minimizing by a virtual machining system [J]. Journal of Manufacturing Science and Engineering, 2016, 138(8): 081005. doi:10.1115/1.4032393
    [32]
    Jywe W, Hsu T H, Liu C H. Non-bar, an optical calibration system for five-axis CNC machine tools [J]. International Journal of Machine Tools and Manufacture, 2012, 59: 16−23. doi:10.1016/j.ijmachtools.2012.01.004
    [33]
    Hansen T B, Yaghjian A D. Planar near-field scanning in the time domain. 2. sampling theorems and computation schemes [J]. IEEE Transactions on Antennas and Propagation, 1994, 42(9): 1292−1300. doi:10.1109/8.318650
    [34]
    Zhao J, Lu H, Deng J. Application of the planar-scanning technique to the near-field dosimetry of millimeter-wave radiators [J]. Bioelectromagnetics, 2015, 36(2): 108−117. doi:10.1002/bem.21889
    [35]
    Capozzoli A, Curcio C, Liseno A. Gradient-based near-field antenna characterization in planar geometry [J]. Applied Computational Electromagnetics Society Journal, 2018, 33(1): 119−122.
    [36]
    Lau K, Hocken R J, Haight W C. Automatic laser tracking interferometer system for robot metrology [J]. Precision Engineering, 1986, 8(1): 3−8. doi:10.1016/0141-6359(86)90002-4
    [37]
    Lee D M, Lee H H, Yang S H. Analysis of squareness measurement using a laser interferometer system [J]. International Journal of Precision Engineering and Manufacturing, 2013, 14(10): 1839−1846. doi:10.1007/s12541-013-0246-0
    [38]
    Grishin S G. An analysis of the polarization component of the measurement error in heterodyne laser interferometer measurement systems [J]. Measurement Techniques, 2012, 54(12): 1378−1387. doi:10.1007/s11018-012-9899-9
    [39]
    Xu H. A numerical method for computing an SVD-like decomposition [J]. Siam Journal on Matrix Analysis & Applications, 2005, 26(4): 1058−1082.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)/Tables(3)

    Article Metrics

    Article views (334) PDF downloads(5) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map