Welcome to Journal of Beijing Institute of Technology
Volume 26Issue 2
.
Turn off MathJax
Article Contents
Jie Ouyang, Hongquan Yin, Qingshan Zhang, Yunzheng Li, Pengjun Yao. Synthesis and Characterization of Novel Biodegradable Poly Copolymers[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2017, 26(2): 276-284. doi: 10.15918/j.jbit1004-0579.201726.0218
Citation: Jie Ouyang, Hongquan Yin, Qingshan Zhang, Yunzheng Li, Pengjun Yao. Synthesis and Characterization of Novel Biodegradable Poly Copolymers[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2017, 26(2): 276-284.doi:10.15918/j.jbit1004-0579.201726.0218

Synthesis and Characterization of Novel Biodegradable Poly Copolymers

doi:10.15918/j.jbit1004-0579.201726.0218
  • Received Date:2016-09-07
  • Novel biodegradable aliphatic polyesters, poly(butylene succinate-co-triethylene glycol succinate) (P(BS-co-TEGS)) and poly(butylene succinate) (PBS), were synthesized through a two-step procedure of esterification and polycondensation with succinic acid and 1, 4-butanediol/triethylene glycol as raw materials as well as tetrabutyl titanate and diphenylphosphinic acid as the co-catalysts. The chemical structure and molecular weight of the copolymers were characterized by 1H nuclear magnetic resonance ( 1H NMR) and gel permeation chromatography (GPC), respectively. In addition, thermal properties, crystal structure and mechanical properties were also analyzed with various techniques. P(BS-co-TEGS) exhibited more excellent mechanical properties than PBS, especially in elongation at break. Meanwhile, the crystal structure and thermal stability of the P(BS-co-TEGS) have hardly changed. The crystallinity of P (BS-co-TEGS) was lower than that of PBS and decreased with the increase of mole ratio of triethylene glycol. With the increase of TEGS unit molar composition, the melting point ( T m), crystallization temperatures ( T c) and heat of fusion (Δ H m) of P(BS-co-TEGS) decreased, while glass transition temperature ( T g) increased.
  • loading
  • [1]
    Li S L, Wu F, Wang Y Z, et al. Biobased thermoplastic poly(ester urethane) elastomers consisting of poly(butylene succinate) and poly(propylene succinate)[J]. Industrial & Engineering Chemistry Research, 2015, 54(24):6258-6268.
    [2]
    Chen H B, Wang X L, Zeng J B, et al. A novel multiblock poly(ester urethane) based on poly (butylene succinate) and poly(ethylene succinate-co-ethylene terephthalate)[J]. Industrial & Engineering Chemistry Research, 2011, 50(4):2065-2072.
    [3]
    Jing X, Mi H Y, Peng X F, et al. The morphology, properties, and shape memory behavior of polylacticacid/thermoplastic polyurethane blends[J]. Polymer Engineering & Science, 2014, 55(1):70-80.
    [4]
    Gramlich W M. Toughening polylactide with phase-separating complex copolymer architectures[J]. Macromolecular Chemistry & Physics, 2014, 216(2):145-155.
    [5]
    Chang K, Robertson M L, Hillmyer M A. Phase inversion in polylactide/soybean oil blends compatibilized by poly(isoprene-b-lactide) block copolymers[J]. Acs Applied Materials & Interfaces, 2009, 1(10):2390-2399.
    [6]
    Liu H, Han C, Dong L. Preparation and characterization of poly(ε[WTB4] -caprolactone)/calcium carbonate nanocomposites and nanocomposite foams[J]. Polymer Composites, 2010, 31(9):1653-1661.
    [7]
    Ju D, Han L, Li F, et al. Poly(ε[WTB4] -caprolactone) composites reinforced by biodegradable poly(3-hydroxybutyrate-co-3-hydroxyvalerate) fiber[J]. International Journal of Biological Macromolecules, 2014, 67:343-350.
    [8]
    Yang X, Cui C, Tong Z, et al. Poly(ε[WTB4] -caprolactone)-based copolymers bearing pendant cyclic ketals and reactive acrylates for the fabrication of photocrosslinked elastomers[J]. Acta Biomaterialia, 2013, 9(9):8232-8244.
    [9]
    Zheng L, Li C, Wang Z, et al. Novel biodegradable and double crystalline multiblock copolymers comprising of poly(butylene succinate) and poly(ε[WTB4] -caprolactone):synthesis, characterization, and properties[J]. Industrial & Engineering Chemistry Research, 2012, 51(21):1-4.
    [10]
    Liu F Y, Xu C L, Zeng J B, et al. Non-isothermal crystallization kinetics of biodegradable poly(butylene succinate-co-diethylene glycol succinate) copolymers[J]. Thermochimica Acta, 2013, 568(14):38-45.
    [11]
    Ludueña L N, Fortunati E, Morán J I, et al. Preparation and characterization of poly(butylene-succinate)/poly(ethylene-glycol)/cellulose nanocrystals ternary composites[J]. Journal of Applied Polymer Science, 2015, 133(15):43302.
    [12]
    Feng R H. Research and industrial developments analysis of biodegradable materials[J]. Materials Review, 2014, 28:119-123. (in Chinese)
    [13]
    Zhang H L, Sun X H, Chen Q Y, et al. Miscibility, crystallization, and mechanical properties of PPC/PBS blends[J]. Chinese Journal of Polymer Science, 2011, 25(6):589-597.
    [14]
    He W, Lan J, Huang X, et al. Synthesis, characterization, and properties of biodegradable poly(butylene succinate) modified with imide dihydric alcohol[J]. Journal of Applied Polymer Science, 2014, 131(18):9579-9585.
    [15]
    Liu G C, Zeng J B, Huang C L, et al. Crystallization kinetics and spherulitic morphologies of biodegradable poly(butylene succinate-co-diethylene glycol succinate) copolymers[J]. Industrial & Engineering Chemistry Research, 2013, 52(4):1591-1599.
    [16]
    Zeng J B, Huang C L, Jiao L, et al. Synthesis and properties of biodegradable poly(butylene succinate-co-diethylene glycol succinate) copolymers[J]. Industrial & Engineering Chemistry Research, 2012, 51(38):12258-12265.
    [17]
    Lyu L, Wu F, Chen S C, et al. Properties regulation of poly(butylene succinate) ionomers through their ionic group distribution[J]. Polymer, 2015, 66:148-159.
    [18]
    Zhu Q Y, He Y S, Zeng J B, et al. Synthesis and characterization of a novel multiblock copolyester containing poly(ethylene succinate) and poly(butylene succinate)[J]. Materials Chemistry & Physics, 2011, 130(3):943-949.
    [19]
    Wang J, Zheng L, Li C, et al. Fully biodegradable blends of poly(butylene succinate) and poly(butylene carbonate):miscibility, thermal properties, crystallization behavior and mechanical properties[J]. Polymer Testing, 2012, 31(1):39-45.
    [20]
    Li F, Luo S, Yu J. Mechanical, thermal properties and isothermal crystallization kinetics of biodegradable poly(butylene succinate-co-terephthalate) (PBST) fibers[J]. Journal of Polymer Research, 2010, 17(2):279-287.
    [21]
    Ludueña L N, Fortunati E, Morán J I, et al. Preparation and characterization of poly(butylene-succinate)/poly(ethylene-glycol)/cellulose nanocrystals ternary composites[J]. Journal of Applied Polymer Science, 2015, 133(15):43302.
    [22]
    Oliveira J T, Crawford A, Mundy J L, et al. Novel melt-processable chitosan-poly(butylene succinate) fiber scaffolds for cartilage tissue engineering[J]. Journal of Biomaterials Science Polymer Edition, 2011, 22(4-6):773-788.
    [23]
    Tan L, Chen Y, Zhou W, et al. Synthesis of novel biodegradable poly(butylene succinate) copolyesters composing of isosorbide and poly(ethylene glycol)[J]. Journal of Applied Polymer Science, 2011, 121(4):2291-2300.
    [24]
    Gigli M, Negroni A, Zanaroli G, et al. Environmentally friendly PBS-based copolyesters containing PEG-like subunit:effect of block length on solid-state properties and enzymatic degradation[J]. Reactive & Functional Polymers, 2013, 73(5):764-771.
    [25]
    Ghaffarian V, Mousavi S M, Bahreini M, et al. Poly(butylene succinate)/polyethersulfone/poly(ethylene glycol) membrane:influence of additive molecular weight and concentration on morphology, properties, and performance of the membrane[J]. Desalination & Water Treatment, 2015, 57:16800-16809.
    [26]
    Ye S, Tan L, Chen Y, et al. Synthesis and characterization of biodegradable poly(butylene succinate)-co-oligo(L-valine) copolyesters via direct melt transesterification[J]. Journal of Applied Polymer Science, 2012, 125(125):3092-3099.
    [27]
    Xu C L, Zeng J B, Zhu Q Y, et al. Poly(ethylene succinate)-b-poly(butylene succinate) multiblockcopolyesters:the effects of block length and composition on physical properties[J]. Industrial & Engineering Chemistry Research, 2013, 52(38):13669-13676.
    [28]
    Yang F, Qiu Z. Miscibility and crystallization behavior of biodegradable poly(butylene succinate)/tannic acid blends[J]. Industrial & Engineering Chemistry Research, 2011, 50(21):11970-11974.
    [29]
    Xu Y, Xu J, Guo B, et al. Crystallization kinetics and morphology of biodegradable poly(butylene succinate-co-propylene succinate)s[J]. Journal of Polymer Science Part B Polymer Physics, 2007, 45(4):420-428.
    [30]
    Fan D, Chang P R, Lin N, et al. Structure and properties of alkaline lignin-filled poly(butylene succinate) plastics[J]. Iranian Polymer Journal, 2011, 20(1):3-14.
    [31]
    Shibata M, Teramoto N, Inoue Y. Mechanical properties, morphologies, and crystallization behavior of plasticized poly(l-lactide)/poly(butylene succinate-co-l-lactate) blends[J]. Polymer, 2007, 48(9):2768-2777.
    [32]
    Wang W, Zhang G, Zhang W, et al. Processing and thermal behaviors of poly(butylene succinate) blends with highly-filled starch and glycerol[J]. Journal of Polymers & the Environment, 2013, 21(21):46-53.
    [33]
    Aontee A, Sutapun W. A study of compatibilization effect on physical properties of poly(butylene succinate) and high density polyethylene blend[J]. Advanced Materials Research, 2013, 699:51-56.
    [34]
    Miao W H, Chen S J, Zhang J. Study on properties of poly(butylene succinate)/starch composites and its preparation[J]. Plastics Science & Technology, 2011, 39:86-90.(in Chinese)
    [35]
    Wang G, Qiu Z. Synthesis, crystallization kinetics, and morphology of novel biodegradable poly(butylene succinate-co-hexamethylene succinate) copolyesters[J]. Industrial & Engineering Chemistry Research, 2012, 51(50):16369-16376.
    [36]
    Wang J, Zheng L C, Li C C, et al. Synthesis and properties of biodegradable poly(ester-co-carbonate) multiblock copolymers comprising of poly(butylene succinate) and poly(butylene carbonate) by chain extension[J]. Industrial & Engineering Chemistry Research, 2012, 51(33):10785-10792
    [37]
    Sheikholeslami S N, Rafizadeh M, Taromi F A, et al. Material properties of degradable poly(butylene succinate-co-fumarate) copolymer networks synthesized by polycondensation of pre-homopolyesters[J]. Polymer, 2016, 98:70-79.
    [38]
    Huang C L, Jiao L, Zeng J B, et al. Crystallization behavior and morphology of double crystalline poly(butylene succinate)-poly(ethylene glycol) multiblock copolymers[J]. Polymer, 2012, 53:3780-3790.
    [39]
    Huang C L. Poly(butylene succinate)-poly(ethylene glycol) multiblock copolymer:synthesis, structure, properties and shape memory performance[J]. Polymer Chemistry, 2012, 3(3):800-808.
    [40]
    Cao A, Okamura T, Nakayama K, et al. Studies on syntheses and physical properties of biodegradable aliphatic poly(butylene succinate-co-ethylene succinate)s and poly (butylene succinate-co-diethylene glycol succinate)s[J]. Polymer Degradation & Stability, 2002, 78(1):107-117.
    [41]
    Zheng L, Wang Z, Wu S, et al. Novel poly(butylene fumarate) and poly(butylene succinate) multiblock copolymers bearing reactive carbon-carbon double bonds:synthesis, characterization, cocrystallization, and properties[J]. Industrial & Engineering Chemistry Research, 2013, 52(18):983-986.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (614) PDF downloads(464) Cited by()
    Proportional views
    Related

    /

      Return
      Return
        Baidu
        map