Welcome to Journal of Beijing Institute of Technology
Volume 26Issue 4
.
Turn off MathJax
Article Contents
Ting Liu, Xiangmei Zhang, Fanglong Zhao, Wenyu Lu. Molecular Simulation and Catalytic Active Sites Identification of Dammarenediol-II Synthase[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2017, 26(4): 563-570. doi: 10.15918/j.jbit1004-0579.201726.0417
Citation: Ting Liu, Xiangmei Zhang, Fanglong Zhao, Wenyu Lu. Molecular Simulation and Catalytic Active Sites Identification of Dammarenediol-II Synthase[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2017, 26(4): 563-570.doi:10.15918/j.jbit1004-0579.201726.0417

Molecular Simulation and Catalytic Active Sites Identification of Dammarenediol-II Synthase

doi:10.15918/j.jbit1004-0579.201726.0417
  • Received Date:2016-11-02
  • Squalene and oxidosqualene cyclizations are regarded as the most complex chemical reactions in the nature, which can achieve protonation, deprotonation,a sequence of hydride and methyl migration. Dammarenediol-Ⅱ synthase (DS), as a kind of 2,3-oxidosqualene-triterpene cyclase, catalyses 2,3-oxidosqualene to form dammarenediol-Ⅱ. To assess the three-dimensional (3D) structure and catalytic active sites of dammarenediol-Ⅱ synthase, utilizing the homology modeling method, 3D models of DS were established in the Modeller9v14 software and I-TASSER server. With the highest sequence identity with DS, human oxidosqualene cyclase 3D models (PDB:1W6K and 1W6J) were chosen as templates. Through further evaluation and optimization, an optimal DS model was obtained consequently. Then several putative catalytic active sites were found through the molecular docking simulation between DS model and product dammarenediol-Ⅱ by using Autodock 4.2. Finally, site-directed mutants of DS were expressed in Saccharomyces cerevisiae, a significant decrease of the yield of dammarenediol-Ⅱ is achieved, which verified the significance of these putative active sites.
  • loading
  • [1]
    Coon J T, Ernst E. Panax ginseng[J]. Drug Safety, 2002, 25(5):323-344.
    [2]
    Okazaki H, Tazoe F, Okazaki S, et al. Increased cholesterol biosynthesis and hypercholesterolemia in mice overexpressing squalene synthase in the liver[J]. Journal of Lipid Research, 2006, 47(9):1950-1958.
    [3]
    Haralampidis K, Trojanowska M, Osbourn A E. Biosynthesis of triterpenoid saponins in plants[M]. History and Trends in Bioprocessing and Biotransformation. Heidelberg, Berlin:Springer, 2002:31-49.
    [4]
    Wu Q, Song J, Sun Y, et al. Transcript profiles of Panax quinquefoliusfrom flower, leaf and root bring new insights into genes related to ginsenosides biosynthesis and transcriptional regulation[J]. Physiologia Plantarum, 2010, 138(2):134-149.
    [5]
    Kim Y J, Zhang D, Yang D C. Biosynthesis and biotechnological production of ginsenosides[J]. Biotechnology Advances, 2015, 33(6):717-735.
    [6]
    Xu R, Fazio G C, Matsuda S P. On the origins of triterpenoid skeletal diversity[J]. Phytochemistry, 2004, 65(3):261-291.
    [7]
    Abe I. Enzymatic synthesis of cyclic triterpenes[J]. Natural Product Reports, 2007, 24(6):1311-1331.
    [8]
    Tansakul P, Shibuya M, Kushiro T, et al. Dammarenediol-Ⅱ synthase, the first dedicated enzyme for ginsenoside biosynthesis, in Panax ginseng[J]. FEBS Letters, 2006, 580(22):5143-5149.
    [9]
    Xiong Q, Rocco F, Wilson W K, et al. Structure and reactivity of the dammarenyl cation:configurational transmission in triterpene synthesis[J]. The Journal of Organic Chemistry, 2005, 70(14):5362-5375.
    [10]
    Wang L, Zhao S J, Cao H J, et al.The isolation and characterization of dammarenediol synthase gene from Panax quinquefoliusand its heterologous co-expression with cytochrome P450 gene PqD12H in yeast[J]. Functional & Integrative Genomics, 2014, 14(3):545-557.
    [11]
    Dai Z, Liu Y, Zhang X, et al. Metabolic engineering of Saccharomyces cerevisiae for production of ginsenosides[J]. Metabolic Engineering, 2013, 20:146-156.
    [12]
    Hu W, Liu N, Tian Y, et al. Molecular cloning, expression, purification, and functional characterization of dammarenediol synthase from Panax ginseng[J]. BioMed Research International, 2013, 2013:285740.
    [13]
    Han J Y, Kwon Y S, Yang D C, et al. Expression and RNA interference-induced silencing of the dammarenediol synthase gene in Panax ginseng[J]. Plant and Cell Physiology, 2006, 47(12):1653-1662.
    [14]
    Chothia C, Lesk A M. The relation between the divergence of sequence and structure in proteins[J]. The EMBO Journal, 1986, 5(4):823.
    [15]
    Jiang F, Kim S H. "Soft docking":matching of molecular surface cubes[J]. Journal of Molecular Biology, 1991, 219(1):79-102.
    [16]
    Rolando Rodriguez G C, Nelia Lopez, Tirso Pons, et al. Homology modeling, model and software evaluation:three related resources[J]. Bioinformatics, 1998, 14(6):523-528.
    [17]
    Le Saux O, Martin L, Aherrahrou Z, et al. The molecular and physiological roles of ABCC6:more than meets the eye[J]. Frontiers in Genetics, 2012, 3:289.
    [18]
    Thomsen R, Christensen M H. MolDock:a new technique for high-accuracy molecular docking[J]. Journal of Medicinal Chemistry, 2006, 49(11):3315-3321.
    [19]
    Chang M W, Ayeni C, Breuer S, et al. Virtual screening for HIV protease inhibitors:a comparison of AutoDock 4 and Vina[J]. PloS One, 2010, 5(8):e11955.
    [20]
    Apostolakis J, Caflisch A. Docking small ligands in flexible binding sites[J]. Journal of Computational Chemistry, 1998, 19(1):21-37.
    [21]
    Thoma R, Schulz-Gasch T, D'Arcy B, et al. Insight into steroid scaffold formation from the structure of human oxidosqualene cyclase[J]. Nature, 2004, 432(7013):118-122.
    [22]
    Fiser A, Šali A. Modeller:generation and refinement of homology-based protein structure models[J]. Methods in Enzymology, 2003, 374:461-491.
    [23]
    Zhang Y. I-TASSER server for protein 3D structure prediction[J]. BMC Bioinformatics, 2008, 9(1):40.
    [24]
    Ramachandran S, Kota P, Ding F, et al. Automated minimization of steric clashes in protein structures[J]. Proteins:Structure, Function, and Bioinformatics, 2011, 79(1):261-270.
    [25]
    Huey R, Morris G M. Using AutoDock 4 with AutoDockTools:a tutorial[M]. San Diego, California, USA:The Scripps Research Institute, 2008:54-56.
    [26]
    Hoshino T, Sato T. Squalene-hopene cyclase:catalytic mechanism and substrate recognition[J]. Chemical Communications, 2002(4):291-301.
    [27]
    Rose M D, Winston F M, Heiter P. Methods in yeast genetics:a laboratory course manual[M]. Cold Spring Harbor, New York:Cold Spring Harbor Laboratory Press, 1990:178-179.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (793) PDF downloads(805) Cited by()
    Proportional views
    Related

    /

      Return
      Return
        Baidu
        map