Welcome to Journal of Beijing Institute of Technology
Volume 31Issue 3
Jun. 2022
Turn off MathJax
Article Contents
Siyu Ji, Xuhui Jin. A New Class of Biodegradable Organic Optoelectronic Materials: α-Oligofurans[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2022, 31(3): 251-258. doi: 10.15918/j.jbit1004-0579.2022.014
Citation: Siyu Ji, Xuhui Jin. A New Class of Biodegradable Organic Optoelectronic Materials: α-Oligofurans[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2022, 31(3): 251-258.doi:10.15918/j.jbit1004-0579.2022.014

A New Class of Biodegradable Organic Optoelectronic Materials: α-Oligofurans

doi:10.15918/j.jbit1004-0579.2022.014
More Information
  • Author Bio:

    Siyu Jireceived her Bachelor’s degree from Shandong Normal University, Jinan, China, in 2019. Currently she is a master’s student at Beijing Institute of Technology, Beijing,China. Her current research interests is the design and synthesis of novel organic conjugated materials

    Xuhui Jinreceived his Bachelor’s degree from Jilin University in 2006. He received his Ph.D. degree from Fujian Institute of Research on Structure, Chinese Academy of Sciences, in 2011. From 2011 to 2019 he carried out postdoctoral research at Weizmann Institute of Science and University of Bristol with Prof. Michael Bendikov and Prof. Ian Manners. In 2019 he joined in Beijing Institute of Technology (BIT),where he is currently an Professor in School of Chemistry and Chemical Engineering. His current research interests focus on novel organic optoelectronic molecules and controllable low-dimensional organic optoelectronic nanocomposites

  • Corresponding author:xuhui.jin@bit.edu.cn
  • Received Date:2022-01-27
  • Rev Recd Date:2022-02-05
  • Accepted Date:2022-02-10
  • Publish Date:2022-06-28
  • Organic optoelectronic materials have received considerable attention due to their great potentials in electronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLED) and organic photovoltaic cells (OPV). Besides, their fascinating properties of flexibility, biocompatibility, molecular diversity, low-cost and solution processability bring new opportunities in bioelectronics in the past decade. While almost all known organic optoelectronic materials are obtained from unrenewable fossil resources and nondegradable, a new family of organic optoelectronic materials is now emerging, which can be obtained from green plants and are biodegradable. Meanwhile, they exhibit excellent optoelectronic properties. This review summarized the synthesis and important molecular properties of this new class of biodegradable organic optoelectronic materials: α-oligofurans. Recent progress of furan-based materials and the existing challenges are also discussed to stimulate further advances in the study of this class of materials.
  • loading
  • [1]
    G. Zhang, J. Zhao, P. C. Y. Chow, K. Jiang, J. Zhang, Z. Zhu, J. Zhang, F. Huang, and H. Yan, “Nonfullerene acceptor molecules for bulk heterojunction organic solar cells, ” Chemical Review, vol. 118 , no. 7, pp. 3447-3507, 2018.
    [2]
    Y. Lin, Y. Li, and X. Zhan, “Small molecule semiconductors for high-efficiency organic photovoltaics, ” Chemical Society Reviews, vol. 41, no. 11, pp. 4245-4272, 2012.
    [3]
    Y. Zhao, Y. Guo, and Y. Liu, “25th anniversary article: Recent advances in n-type and ambipolar organic field-effect transistors, ” Advanced Material, vol. 25, no. 38, pp. 5372-91, 2013.
    [4]
    Y. Huang, D. L. Elder, A. L. Kwiram, S. A. Jenekhe, A. K. Y. Jen, L. R. Dalton, and C. K. Luscombe, “Organic semiconductors at the University of Washington: Advancements in materials design and synthesis and toward industrial scale production, ” Advanced Material, vol. 33, no. 22, pp. 1904239, 2013.
    [5]
    S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lussem, and K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency, ” Nature, vol. 459, no. 7244, pp. 234-238, 2009.
    [6]
    L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, “Poly(3, 4-ethylenedioxythiophene) and its derivatives: Past, present, and future, ” Nature, vol. 12 , no. 7, pp. 481-494, 2000.
    [7]
    W. U. Huynh, J. J. Dittmer, and A. P. Alivisatos, “Hybrid nanorod-polymer solar cells, ” Science, vol. 295, no. 5564, pp. 2425-2427, 2002.
    [8]
    Z. Batool, D. Xu, X. Zhang, X. Li, Y. Li, Z. Chen, B. Li, and L. Li, “A review on furan: Formation, analysis, occurrence, carcinogenicity, genotoxicity and reduction methods, ” Critical Reviews in Food Science and Nutrition, vol. 61, no. 3, pp. 395-406, 2021.
    [9]
    H. Limpricht, “Ueber das Tetraphenol C4H4O, ” Januar–Juni, vol. 3, no. 1, pp. 90-91, 1870.
    [10]
    O. Gidron and M. Bendikov, “α-Oligofurans: An emerging class of conjugated oligomers for organic electronics, ” Angewandte Chemie International Edition, vol. 53, no. 10, pp. 2546-55, 2014.
    [11]
    H. Cao and P. A. Rupar, “Recent advances in conjugated furans, ” Chemistry, vol. 23, no. 59, pp. 14670-14675, 2017.
    [12]
    A. Gandini, “The irruption of polymers from renewable resources on the scene of macromolecular science and technology, ” Green Chemistry, vol. 13, no. 5, pp. 1061-1083, 2011.
    [13]
    H. Tsuji and E. Nakamura, “Design and functions of semiconducting fused polycyclic furans for optoelectronic applications, ” Accounts of Chemical Research, vol. 50, no. 2, pp. 396-406, 2017.
    [14]
    B. Zheng and L. J. Huo, “Recent advances of furan and its derivatives based semiconductor materials for organic photovoltaics, ” Small Methods, vol. 5, no. 9, pp. 2100493, 2021.
    [15]
    O. Gidron, Y. Diskin-Posner, and M. Bendikov, “α-Oligofurans, ” Journal of the American Chemical Society, vol. 132, pp. 2148-2150, 2010.
    [16]
    P. Huang, J. Du, M. C. Biewer, and M. C. Stefan, “Developments of furan and benzodifuran semiconductors for organic photovoltaics, ” J ournal of Materials Chemistry A, vol. 3, no. 12, pp. 6244-6257, 2015.
    [17]
    Y. Liu, J. Yuan, Y. Zou, and Y. Li, “Research progress of the furan containing fused ring conjugated organic molecules and polymers, ” Acta Chimica Sinica, vol. 75, no. 3, pp. 257-270, 2017.
    [18]
    U. H. Bunz, “α-Oligofurans: Molecules without a twist, ” Angewandte Chemie International Edition, vol. 49, no. 30, pp. 5037-5040, 2010.
    [19]
    S. Sharma and M. Bendikov, “α-Oligofurans: A computational study, ” Chemistry, vol. 19, no. 39, pp. 13127-13139, 2013.
    [20]
    Y. Xiong, J. Tao, R. Wang, X. Qiao, X. Yang, D. Wang, H. Wu, and H. Li, “A furan-thiophene-based quinoidal compound: A new class of solution-processable high-performance n-type organic semiconductor, ” Advanced Material, vol. 28, no. 28, pp. 5949-5953, 2016.
    [21]
    D. Sheberla, S. Patra, Y. H. Wijsboom, S. Sharma, Y. Sheynin, A. E. Haj-Yahia, A. H. Barak, O. Gidron, and M. Bendikov, “Conducting polyfurans by electropolymerization of oligofurans, ” Chemical Science, vol. 6, no. 1, pp. 360-371, 2015.
    [22]
    A. J. Varni, M. Kawakami, S. A. Tristram-Nagle, D. Yaron, T. Kowalewski, and K. J. T. Noonan, “Design, synthesis, and properties of a six-membered oligofuran macrocycle, ” Organic Chemistry Frontiers, vol. 8, no. 8, pp. 1775-1782, 2021.
    [23]
    S. V. Mulay, O. Dishi, Y. Fang, M. R. Niazi, L. J. W. Shimon, D. F. Perepichka, and O. Gidron, “A macrocyclic oligofuran: Synthesis, solid state structure and electronic properties, ” Chemical Science, vol. 10, no. 37, pp. 8527-8532, 2019.
    [24]
    O. Dishi and O. Gidron, “Macrocyclic oligofurans: A computational study, ” Journal of Organic Chemistry, vol. 83, no . 6, pp. 3119-3125, 2018.
    [25]
    X. H. Jin, D. Sheberla, L. J. Shimon, and M. Bendikov, “Highly coplanar very long oligo (alkylfuran)s: A conjugated system with specific head-to-head defect, ” Journal of the American Chemical Society, vol. 136, no. 6, pp. 2592-2601, 2014.
    [26]
    O. Gidron, A. Dadvand, E. Wei-Hsin Sun, I. Chung, L. J. W. Shimon, M. Bendikov, and D. F. Perepichka, “Oligofuran-containing molecules for organic electronics, ” Journal of Materials Chemistry C, vol. 1, no. 28, pp. 4358-4367, 2013.
    [27]
    L. Fritze, M. Fest, A. Helbig, T. Bischof, I. Krummenacher, H. Braunschweig, M. Finze, and H. Helten, “Boron-doped α-oligo- and polyfurans: Highly luminescent hybrid materials, color-tunable through the doping density, ” Macromolecules, vol. 54, no. 16, pp. 7653-7665, 2021.
    [28]
    X. Yin, F. Guo, R. A. Lalancette, and F. Jäkle, “Luminescent main-chain organoborane polymers: highly robust, electron-deficient poly (oligothiophene borane)s via stille coupling polymerization, ” Macromolecules, vol. 49, no. 2, pp. 537-546, 2016.
    [29]
    B. Li, “Furan derivatives: An emerging class of organic semiconductors, ” Chinese Journal of Organic Chemistry, vol. 35, no. 12, pp. 2487-2560, 2015.
    [30]
    O. Gidron, N. Varsano, L. J. W. Shimon, G. Leitus, and M. Bendikov, “Study of a bifuran vs. bithiophene unit for the rational design of pi-conjugated systems. What have we learned?, ” Chemical Communications, vol. 49, no. 56, pp. 6256-6258, 2013.
    [31]
    C. H. Woo, P. M. Beaujuge , T. W. Holcombe, O. P. Lee, and J. M. J. Fréchet, “Incorporation of furan into low band-gap polymers for efficient solar cells, ” Journal of the American Chemical Society, vol. 132, pp. 15547-15549, 2010.
    [32]
    E. E. Korshin, G. M. Leitus, and M. Bendikov, “Convenient access to readily soluble symmetrical dialkyl-substituted alpha-oligofurans, ” Organic & Biomolecular Chemistry, vol. 12, no. 34, pp. 6661-6671, 2014
    [33]
    H. Liang, X. Zhang, R. Peng, X. Ouyang, Z. Liu, S. Chen, and Z. Ge, “Photovoltaic performance enhancement from diketopyrrolopyrrole-based solar cells through structure manipulation, ” Dyes and Pigments, vol. 112, pp. 145-153, 2015.
    [34]
    K. Qian, C. Qu, X. Ma, H. Chen, M. Kandawa-Schulz, W. Song, W. Miao, Y. Wang, and Z. Cheng, “Tuning the near infrared II emitting wavelength of small molecule dyes by single atom alteration, ” Chemical Communications, vol. 56, no. 4, pp. 523-526, 2020.
    [35]
    Z. Zhao, H. Nie, C. Ge, Y. Cai, Y. Xiong, J. Qi, W. Wu, R. T. K. Kwok, X. Gao, A. Qin, J. W. Y. Lam, and B. Z. Tang, “Furan is superior to thiophene: A furan-cored AIEgen with remarkable chromism and OLED performance, ” Advanced Science, vol. 4, no. 8, pp. 1700005, 2017.
    [36]
    J. T. Henssler and A. J. Matzger, “Regiochemical effects of furan substitution on the electronic properties and solid-state structure of partial fused-ring oligothiophenes, ” Journal of Organic Chemistry, vol. 77, no. 20, pp. 9298-303, 2012.
    [37]
    D. Qian, B. Liu, S. Wang, S. Himmelberger, M. Linares, M. Vagin, C. Müller, Z. Ma, S. Fabiano, M. Berggren, A. Salleo, O. Inganäs, Y. Zou, and F. Zhang, “Modulating molecular aggregation by facile heteroatom substitution of diketopyrrolopyrrole based small molecules for efficient organic solar cells, ” Journal of Materials Chemistry A, vol. 3, no. 48, pp. 24349-24357, 2015.
    [38]
    C. Capel Ferron, M. C. Ruiz Delgado, O. Gidron, S. Sharma, D. Sheberla, Y. Sheynin, M. Bendikov, J. T. Lopez Navarrete, and V. Hernandez, “alpha-Oligofurans show a sizeable extent of pi-conjugation as probed by Raman spectroscopy, ” Chemical Communication, vol. 48, no. 53, pp. 6732-6734, 2012.
    [39]
    O. Gidron, Y. Diskin-Posner, and M. Bendikov, “High charge delocalization and conjugation in oligofuran molecular wires, ” Chemistry, vol. 19, no. 39, pp. 13140-13150, 2013.
    [40]
    S. Gadakh, L. J. W. Shimon, and O. Gidron, “Regioselective transformation of long pi-conjugated backbones: From oligofurans to oligoarenes, ” Angewandte Chemie International Edition, vol. 56, no. 44, pp. 13601-13605, 2017.
    [41]
    Y. Chen, P. Shen, T. Cao, H. Chen, Z. Zhao, and S. Zhu, “Bottom-up modular synthesis of well-defined oligo(arylfuran)s, ” Nature Communication, vol. 12 no. 1, pp. 6165-6177, 2021.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)

    Article Metrics

    Article views (254) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map