Welcome to Journal of Beijing Institute of Technology
Volume 31Issue 3
Jun. 2022
Turn off MathJax
Article Contents
Lixia Bao, Xiaoying Tang, Zhenqi Jiang. Application of Micro Electro Mechanical System (MEMS) Technology in Photoacoustic Imaging[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2022, 31(3): 238-250. doi: 10.15918/j.jbit1004-0579.2022.015
Citation: Lixia Bao, Xiaoying Tang, Zhenqi Jiang. Application of Micro Electro Mechanical System (MEMS) Technology in Photoacoustic Imaging[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2022, 31(3): 238-250.doi:10.15918/j.jbit1004-0579.2022.015

Application of Micro Electro Mechanical System (MEMS) Technology in Photoacoustic Imaging

doi:10.15918/j.jbit1004-0579.2022.015
Funds:This work was supported by the National Natural Science Foundation of China (No. 32101153) and the Fundamental Research Funds for the Central Universities (No. 2021CX11018).
More Information
  • Author Bio:

    Lixia Baograduated from the School of Mechanical and Electrical Engineering, Beijing Institute of Technology in 2010 and joined Beijing Institute of Technology in 2010 and is now an experimental technician at the Analysis and Testing Center of Beijing Institute of Technology. Now her direction is the maintenance and management of large instruments such as microscopes and the development of testing methods

    Xiaoying Tangreceived the Ph.D. degree from Beijing Institute of Technology, Beijing, China. She is currently a Professor with Beijing Institute of Technology. Her research programs are centered on biomedical image processing, biomedical signal processing, and key technology of MRI equipment

    Zhenqi Jiangreceived his Ph.D. degree in 2020. Now he is a postdoctor at Beijing Institute of Technology, People’s Republic of China. His current research interest includes the synthesis of nanomaterials and their applications

  • Corresponding author:7520200073@bit.edu.cn
  • Received Date:2022-01-29
  • Rev Recd Date:2022-03-06
  • Accepted Date:2022-03-07
  • Publish Date:2022-06-28
  • Photoacoustic imaging (PAI) is a new biomedical imaging technology that provides a mixed contrast mechanism and excellent spatial resolution in biological tissues. It is a non-invasive technology that can provide in vivo anatomical and functional information. This technology has great application potential in microscopic imaging and endoscope system. In recent years, the development of micro electro mechanical system (MEMS) technology has promoted the improvement and miniaturization of the photoacoustic imaging system, as well as its preclinical and clinical applications. This paper introduces the research progress of MEMS technology in photoacoustic microscope systems and the miniaturization of photoacoustic endoscope ultrasonic transducers, and points out the shortcomings of existing technology and the direction of future development.
  • loading
  • [1]
    J. Y. Kim, C. Lee, K. Park, S. Han, and C. Kim, “High-speed and high-SNR photoacoustic microscopy based on a galvanometer mirror in non-conducting liquid, ” Scientific Reports, vol. 6, pp. 34803, 2016.
    [2]
    D. Lee, C. Lee, S. Kim, Q. Zhou, J. Kim, and C. Kim, “In vivo near infrared virtual intraoperative surgical photoacoustic optical coherence tomography, ” Scientific Reports, vol. 6, pp. 35176, 2016.
    [3]
    W. Choi, E. Y. Park, S. Jeon, and C. Kim, “Clinical photoacoustic imaging platforms, ” Biomedical Engineering Letters, vol. 8, no. 2, pp. 139-155, 2018.
    [4]
    S. Park, U. Jung, S. Lee, D. Lee, and C. Kim, “Contrast-enhanced dual mode imaging: Photoacoustic imaging plus more, ” Biomedical Engineering Letter, vol. 7, no. 2, pp. 121-133, 2017.
    [5]
    S. Lee, O. Kwon, M. Jeon, J. Song, S. Shin, H. M. Kim, M. Jo, T. Rim, J. Doh, S. Kim, J. Son, Y. Kim, and C. Kim, “Super-resolution visible photoactivated atomic force microscopy, ” Light: Science & Applications, vol. 6, pp. e17080, 2017.
    [6]
    S. Zackrisson, S. M. W. Y. van de Ven, and S. S. Gambhir, “Light in and sound out: Emerging translational strategies for photoacoustic imaging, ” Cancer Research, vol. 74, no. 4, pp. 979-1004, 2014.
    [7]
    M. H. Xu and L. H. V. Wang, “Photoacoustic imaging in biomedicine, ” Review of Scientific Instruments, vol. 77, no. 4, pp. 305-598, 2006.
    [8]
    J. B. Tang, X. J. Dai, and H. B. Jiang, “Wearable scanning photoacoustic brain imaging in behaving rats, ” Journal of Biophotonics, vol. 9, no. 6, pp. 570, 2016.
    [9]
    S. A. Ermilov, T. Khamapirad, A. Conjusteau, M. H. Leonard, R. Lacewell, K. Mehta, T. Miller, and A. A. Oraevsky, “Laser optoacoustic imaging system for detection of breast cancer, ” Journal of Biomedical Optics, vol. 14, no. 2, pp. 024007, 2009.
    [10]
    S. Jeon, H. B. Song, J. Kim, B. J. Lee, R. Managuli, J. H. Kim, and C. Kim, “In vivo photoacoustic imaging of anterior ocular vasculature: A random sample consensus approach, ” Scientific Reports, vol. 7, no. 1, pp. 4318, 2017.
    [11]
    P. Wray, L. Lin, P. Hu, and L. V. Wang, “Photoacoustic computed tomography of human extremities, ” Journal of Biomedical Optics, vol. 24, no. 2, pp. 026003.1-026003.8, 2019.
    [12]
    L. Xi and H. B. Jiang, “High resolution three-dimensional photoacoustic imaging of human finger joints in vivo, ” Applied Physics Letters, vol. 15, no. 6, pp. 18076-18081, 2015.
    [13]
    Y. Yi, S. Yang, and X. Da, “Optical-resolution photoacoustic microscopy based on two-dimensional scanning galvanometer, ” Applied Physics Letters, vol. 100, no. 2, pp. 803, 2012.
    [14]
    Z. J. Chen, S. H. Yang, and D. Xing, “In vivo detection of hemoglobin oxygen saturation and carboxyhemoglobin saturation with multiwavelength photoacoustic microscopy, ” Optics Letters, vol. 37, no. 16, pp. 3414, 2012.
    [15]
    Z. J. Chen, S. H. Yang, Y. Wang, and D. Xing, “All-optically integrated photo-acoustic microscopy and optical coherence tomography based on a single Michelson detector, ” Optics Letters, vol. 40, no. 12, pp. 2838-2841, 2015.
    [16]
    C. Lee, Y. K. Jin, and C. Kim, “Recent progress on photoacoustic imaging enhanced with microelectromechanical systems (MEMS) technologies, ” Micromachines, vol. 9, no. 11, pp. 584, 2018.
    [17]
    R. Zhang, M. Yang, and Y. X. Jiang, “Photoacoustic imaging and its clinical applications, ” Medical Journal of Peking Union Medical College Hospital, vol. 10, no. 4, pp. 381-386, 2019.
    [18]
    H. R. Wang, Y. F. Ma, H. Yang, H. B. Jiang, Y. T. Ding, and H. K. Xie, “MEMS ultrasound transducers for endoscopic photoacoustic imaging applications, ” Micromachines, vol. 11, no. 10, pp. 928, 2020.
    [19]
    F. Khoshnoud, “Recent advances in MEMS sensor technology-mechanical applications, ” Instrumentation & Measurement Magazine IEEE, vol. 15, no. 2, pp. 14-24, 2012.
    [20]
    S. Sant, S. L. Tao, O. Z. Fisher, Q. B. Xu, N. A. Peppas, and A. Khademhosseini, “Microfabrication technologies for oral drug delivery, ” Advanced Drug Delivery Reviews, vol. 64, no. 6, pp. 496-507, 2012.
    [21]
    T. Chuangsuwanich, M. Moothanchery, A. T. C. Yan, L. Schmetterer, M. J. A. Girard, and M. Pramanik, “Photoacoustic imaging of lamina cribrosa microcapillaries in porcine eyes, ” Applied Optics, vol. 57, no. 17, pp. 4865, 2018.
    [22]
    R. Bi, U. S. Dinish, C. C. Goh, T. Imai, M. Moothanchery, X. T. Li, J. Y. Kim, S. Jeon, Y. Pu, C. Kim, L. G. Ng, L. V. Wang, and M. Olivo, “In vivo label‐free functional photoacoustic monitoring of ischemic reperfusion, ” Journal of Biophotonics, vol. 12, no. 7, pp. e201800454, 2019.
    [23]
    R. Bi, G. Balasundaram, S. Jeon, H. C. Tay, Y. Pu, X. T. Li, M. Moothanchery, C. Kim, and M. Olivo, “Photoacoustic microscopy for evaluating combretastatin A4 phosphate induced vascular disruption in orthotopic glioma, ” Journal of Biophotonics, vol. 11, no. 10, pp. e201700327, 2018.
    [24]
    H. Estrada, J. Turner, M. Kneipp, and D. Razansky, “Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution, ” Laser Physics Letters, vol. 11, no. 4, pp. 045601, 2014.
    [25]
    H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, “Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging, ” Nature Biotechnology, vol. 24, no. 7, pp. 848, 2006.
    [26]
    K. Pu, A. J. Shuhendler, J. V. Jokerst, J. G. Mei, S. S. Gambhir, Z. N. Bao, and J. H. Rao, “Semiconducting polymer nanoparticles as photoacoustic molecular imaging probes in living mice, ” Nature Nanotechnology, vol. 9, no. 3, pp. 233, 2014.
    [27]
    M. Jeon, J. Kim, and C. Kim, “Multiplane spectroscopic whole-body photoacoustic imaging of small animals in vivo, ” Medical& Biological Engineering & Computing, vol. 54, no. 2-3, pp. 283-294, 2016.
    [28]
    M. Moothanchery and M. Pramanik, “Performance characterization of a switchable acoustic resolution and optical resolution photoacoustic microscopy system, ” Sensors, vol. 17, no. 2, pp. 357, 2017.
    [29]
    M. Moothanchery, R. Bi, Y. K. Jin, G. Balasundaram, C. Kim, and M. Olivo, “High-speed simultaneous multiscale photoacoustic microscopy, ” Journal of Biomedical Optics, vol. 24, no. 8, pp. 1-7, 2019.
    [30]
    T. T. W. Wong, R. Y. Zhang, C. Zhang, H. C. Hsu, K. I. Maslov, L. D. Wang, J. H. Shi, R. M. Chen, K. K. Shung, Q. F. Zhou, and L. V. Wang, “Label-free automated three-dimensional imaging of whole organs by microtomy-assisted photoacoustic microscopy, ” Nature Communications, vol. 8, no. 1, pp. 1386, 2017.
    [31]
    H. Song, K. Maslov, and L. V. Wang, “Second-generation optical-resolution photoacoustic microscopy with improved sensitivity and speed, ” Optics Letters, vol. 36, no. 7, pp. 1134-1136, 2011.
    [32]
    L. R. Zhu, L. Li, L. Gao, and L. V. Wang, “Multiview optical resolution photoacoustic microscopy, ” Optica, vol. 1, no. 4, pp. 217-222, 2014.
    [33]
    W. Z. Qi, Q. Chen, H. Guo, H. K. Xie, and L. Xi, “Miniaturized optical resolution photoacoustic microscope based on a microelectromechanical systems scanning mirror, ” Micromachines, vol. 9, no. 6, pp. 288, 2018.
    [34]
    K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Lim, “Handheld photoacoustic microscopy probe, ” Scientific Reports, vol. 7, no. 1, pp. 13359, 2017.
    [35]
    J. J. Yao, C. H. Huang, L. D. Wang, J. M. Yang, L. Gao, K. I. Maslov, J. Zou, and L. V. Wang, “Wide-field fast-scanning photoacoustic microscopy based on a water-immersible MEMS scanning mirror, ” Journal of Biomedical Optics, vol. 17, no. 8, pp. 080505, 2012.
    [36]
    J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “Fast optical-resolution photoacoustic microscopy using a 2-axis water-proofing MEMS scanner, ” Scientific Reports, vol. 5, pp. 7932, 2015.
    [37]
    J. J. Yao, L. D. Wang, J. M. Yang, K. I. Maslov, T. T. W. Wong, L. Li, C. H. Huang, J. Zou, and L. V. Wang, “High-speed label-free functional photoacoustic microscopy of mouse brain in action, ” Nature Methods, vol. 12, no. 5, pp. 407-410, 2015.
    [38]
    C. H. Huang, J. J. Yao, L. V. Wang, and J. Zou, “A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications, ” Microsystem Technologies, vol. 19, no. 4, pp. 577-582, 2013.
    [39]
    J. Y. Kim, C. Lee, K. Park, G. Lim, and C. Kim, “A PDMS-based 2-axis waterproof scanner for photoacoustic microscopy, ” Sensors, vol. 15, no. 5, pp. 9815-9826, 2015.
    [40]
    L. Lin, P. F. Zhang, S. Xu, J. H. Shi, L. Li, J. J. Yao, L. D. Wang, J. Zou, and L. V. Wang, “Handheld optical-resolution photoacoustic microscopy, ” Journal of Biomedical Optics, vol. 22, no. 4, pp. 41002, 2016.
    [41]
    K. Park, J. Y. Kim, C. Lee, S. Jeon, G. Lim, and C. Kim, “Handheld photoacoustic microscopy probe, ” Scientific Reports, vol. 7, no. 1, pp. 13359, 2017.
    [42]
    J. W. Baik, J. Y. Kim, S. Cho, S. Choi, J. Kim, and C. Kim, “Super wide-field photoacoustic microscopy of animals and humans in vivo, ” IEEE Transactions on Medical Imaging, vol. 39, no. 4, pp. 975-984, 2020. .
    [43]
    M. Moothanchery, K. Dev, G. Balasundaram, R. Bi, and M. Olivo, “Acoustic resolution photoacoustic microscopy based on MEMS scanner, ” Journal of Biophotonics, vol. 13, no. 2, pp. e201960127, 2019.
    [44]
    C. Zhang, Z. Xuan, S. Xu, N. B. Chen, K. Li, X. K. Jiang, L. J. Liu, L. D. Wang, K. K. Y. Wong, and J. Zou, “Multiscale high-speed photoacoustic microscopy based on free-space light transmission and a MEMS scanning mirror, ” Optics Letters, vol. 45, no. 15, pp. 4312-4315, 2020.
    [45]
    Q. Liu, T. Jin, Q. Chen, and L. Xi, “Research progress of miniaturized photoacoustic imaging technology in biomedical field, ” Chinese Journal of Lasers, vol. 47, no. 2, pp. 0207019, 2020.
    [46]
    J. M. Yang, C. Favazza, R. Chen, J. Yao, X. Cai, K. Maslov, Q. Zhou, K. K. Shung, and L. V. Wang, “Simultaneous functional photoacoustic and ultrasonic endoscopy of internal organs in vivo, ” Nature Medicine, vol. 18, no. 8, pp. 1297-1302, 2012.
    [47]
    H. Guo, C. L. Song, H. K. Xie, and L. Xi, “Photoacoustic endomicroscopy based on a MEMS scanning mirror, ” Optics Letters, vol. 42, no. 22, pp. 4615-4618, 2017.
    [48]
    B. Z. Chen, F. T. Chu, X. Z. Liu, Y. R. Li, J. Rong, and H. B. Jiang, “AlN-based piezoelectric micromachined ultrasonic transducer for photoacoustic imaging, ” Applied Physics Letters, vol. 103, no. 3, pp. 8726-1276, 2013.
    [49]
    S. Vaithilingam, T. J. Ma, Y. Furukawa, I. O. Wygant, X. Zhuang, A. D. L. Zerda, O. Oralkan, A. Kamaya, S. Gambhir, R. B. Jeffrey, and B. T. Khuri-yakub, “Three-dimensional photoacoustic imaging using a two-dimensional CMUT array, ” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 56, no. 11, pp. 2411-2419, 2009.
    [50]
    S. Kothapalli, T. J. Ma, S. Vaithilingam, O. Oralkan, B. T. Khuri-Yakub, and S. S. Gambhir, “Deep tissue photoacoustic imaging using a miniaturized 2-D capacitive micromachined ultrasonic transducer array, ” IEEE Transactions on Biomedical Engineering, vol. 59, no. 5, pp. 1199-1204, 2012.
    [51]
    L. Xi, J. J. Sun, Y. P. Zhu, L. Wu, H. K. Xie, and H. B. Jiang, “Photoacoustic imaging based on MEMS mirror scanning, ” Biomedical Optics Express, vol. 1, no. 5, pp. 1278, 2010.
    [52]
    K. Brenner, A. S. Ergun, K. Firouzi, M. F. Rasmussen, and B. P. Khuri-Yakub, “Advances in capacitive micromachined ultrasonic transducers, ” Micromachines, vol. 10, no. 2, pp. 152, 2019.
    [53]
    A. Nikooadeh, Ö. Oralkan, M. Gencel, J. W. Choe, D. N. Stephens, A. De la Rama, P. Chen, F. Lin, A. Dentinger, D. Wildes, K. Thomenius, K. Shivkumar, A. Mahajan, C. H. Seo, M. O. Donnell, U. Truong, D. J. Sahn, and P. T. Khuri-Yakub, “Forward-looking intracardiac imaging catheters using fully integrated CMUT arrays, ” in 2010 IEEE International Ultrasonics Symposium,San Diego, America, pp. 770-773, 2010.
    [54]
    A. Nikoozadeh, J. W. Choe, S. R. Kothapalli, A. Moini, S. S. Sanjani, A. Kamaya, Ö. Oralkan, S. S. Gambhir, and P. T. Khuri-Yakub, “Photoacoustic imaging using a 9F microLinear CMUT ICE catheter, ” in Proceedings of the IEEE International Ultrasonics Symposium, Dresden, Germany, pp. 24-27, 2012.
    [55]
    A. S. Savoia, B. Mauti, and G. Caliano, “Integration of two-dimensional MEMS ultrasonic transducer arrays with front-end electronics for medical ultrasound imaging, ” in AISEM Annual Conference on Sensor and Microsystems, Napoli, Italy, pp. 177-182, 2019.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (248) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    Return
    Return
      Baidu
      map