Welcome to Journal of Beijing Institute of Technology
Volume 18Issue 2
.
Turn off MathJax
Article Contents
LIU Gui-lei, LI Hui, SONG Fang, QIN Yong-jie. Supramolecular Sheet Co(Ⅱ) Complex Assembled by Hydrogen Bond[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2009, 18(2): 233-237.
Citation: LIU Gui-lei, LI Hui, SONG Fang, QIN Yong-jie. Supramolecular Sheet Co(Ⅱ) Complex Assembled by Hydrogen Bond[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2009, 18(2): 233-237.

Supramolecular Sheet Co(Ⅱ) Complex Assembled by Hydrogen Bond

  • Received Date:2008-04-19
  • The title complex, ] <em>n( 1 ) was synthesized by liquid/liquid diffusion method at room temperature. The complex crystallizes in monoclinic, space group P2(1)/C, with a0.877?5(6)nm, b1.171?5(8)nm, c0.751?8(5)nm, V0.739?3(9)nm 3, C 10H 14CoN 4O 8, M r377.18, D c1.694?g/cm 3, μ1.210?mm -1, F(000)386, Z2, the final R0.022?9 and wR0.066?1 for 3?137 observed reflections ( I>2σ(I)). In the structure of 1 , the center atom of cobalt revealed a centrosymmetric, six-coordinate structure, with two Py ligands, two monodentate nitrate groups and two water molecules. It is notable that a series of hydrogen bonds (O—H…O) formed two kinds of rings exist in the structure, which linked neighboring six-coordinate polymer into a two-dimensional H-bonding network, and then assembled into a three-dimensional supramolecular architecture through electrostatic and hydrophobic interaction. In the structure, supramolecular sheet was observed, which contains alternative organic and inorganic layers.
  • loading
  • [1]
    Pamela J Hagrman, Douglas Hagrman, Jon Zubieta. Organic-inorganic hybrid materials: From "simple" coordination polymers to organodiamine-templated molybdenum oxides[J]. Angew Chem Int Ed, 1999, 38: 2638-2684.
    [2]
    Eddaoudi M, Moler D B, Li H L, et al. Modular chemistry: Secondary building units as a basis for the design of highly porous and robust metal-organic carboxylate frameworks[J]. Acc Chem Res, 2001, 34: 319-330.
    [3]
    Zaworotko Michael J. Uperstructural diversity in two dimensions: Crystal engineering of laminated solids[J]. Chem Commun, 2001, 1: 1-9.
    [4]
    Batten S R. Coordination polymers[J]. Curr Opin Solid State Mater Sci, 2001, 5: 107-114.
    [5]
    Susumu Kitagawa, Ryo Kitaura, Shin-ichiro Noro. Functional porous coordination polymers[J]. Angew Chem Int Ed, 2004, 43: 2334-2375.
    [6]
    Stuart R Batten, Richard Robson. Interpenetrating nets: Ordered, periodic entanglement[J]. Angew Chem Int Ed, 1998, 37: 1460-1494.
    [7]
    Carlucci Lucia, Ciani Gianfranco, Proserpio Davide M. Polycatenation, polythreading and polyknotting in coordination network chemistry[J]. Coord Chem ReV, 2003, 246: 247-289.
    [8]
    Hoskins Bernard F, Robson Richard, Slizys Damian A J. An infinite 2D polyrotaxane network in Ag 2(bix) 3(NO 3) 2(bix1,4-Bis(imidazol-1-yl-methyl)benzene)[J]. Am Chem Soc, 1997, 119: 2952-2953.
    [9]
    Bernard F Hoskins, Richard Robson, Damian A Slizys. The structure of ·4.5H 2O (bix1,4-Bis(imidazol-1-ylmethyl)benzene): A new type of two-dimensional polyrotaxane[J]. Angew Chem Int Ed, 1997, 36: 2336-2338.
    [10]
    Seo Jung Soo, Whang Dongmok, Lee Hyoyoung, et al. A homochiral metal-organic porous material for enantioselective separation and catalysis[J]. Nature, 2000, 404: 982-986.
    [11]
    Corma Avelino. State of the art and future challenges of zeolites as catalysts[J]. J Catal, 2003, 216: 298-312.
    [12]
    Zou Ruqiang, Sakurai Hiroaki, Xu Qiang. Preparation, adsorption properties and catalytic activity of 3D porous metal-organic frameworks composed of cubic building blocks and alkali-metal ions[J]. Angew Chem Int Ed, 2006, 45: 2542-2546.
    [13]
    Snurr Randall Q, Hupp Joseph T, Nguyen SonBinh T. Prospects for nanoporous metal-organic materials in advanced separations processes[J]. AIChE J, 2004, 50: 1090-1095.
    [14]
    Matsuda Ryotaro, Kitaura Ryo, Kitagawa Susumu, et al. Highly controlled acetylene accommodation in a metal-organic microporous material[J]. Nature, 2005, 436: 238-241.
    [15]
    Eddaoudi Mohamed, Kim Jaheon, Rosi Nathaniel, et al. Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage[J]. Science, 2002, 295: 469-472.
    [16]
    Rowsell Jesse L C, Spencer Elinor C, Eckert Juergen, et al. Gas adsorption sites in a large-pore metal-organic framework[J]. Science, 2005, 309: 1350-1354.
    [17]
    Ma Shengqian, Zhou Hongcai. A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity[J]. J Am Chem Soc, 2006, 128: 11734-11735.
    [18]
    Peterson Vanessa K, Liu Yun, Brown Craig M, et al. Neutron powder diffraction study of D 2sorption in Cu 3(1,3,5-benzenetricarboxylate) 2[J]. J Am Chem Soc, 2006, 128: 15578-15579.
    [19]
    Shvareva Tatiana Y, Skanthakumar S, Soderholm L, et al. Cs +-selective ion exchange and magnetic ordering in a three-dimensional framework uranyl vanadium(Ⅳ) phosphate[J]. Chem Mater, 2007, 19: 132-134.
    [20]
    Halder Gregory J, Kepert Cameron J, Moubaraki Boujemaa, et al. Guest-dependent spin crossover in a nanoporous molecular framework material[J]. Science, 2002, 298: 1762-1765.
    [21]
    Sheldrick G M. SHELXL97 and SHELXS97 . Gttingen, Germany: University of Gttingen, 1997.
    [22]
    Sheldrick G M. SHELXTL, Version 5.1 . Madison, Wisconsin, USA: Bruker AXS Inc., 1997.
    [23]
    Cameron A F, Taylor D W, Nuttall R H. Structural investigations of metal-nitrate complexes. Ⅳ. Crystal and molecular structure of diaquobis(nitrato)bis(pyridine)nickel(Ⅱ)[J]. J C S Dalton, 1972, 72: 422-426. (Edited by
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (100) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

      Return
      Return
        Baidu
        map