Welcome to Journal of Beijing Institute of Technology
Volume 21Issue 3
.
Turn off MathJax
Article Contents
LI Peng, CHEN Jie, CAI Tao, WANG Guang-hui. Hybrid dynamic model of polymer electrolyte membrane fuel cell stack using variable neural network[J]. JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2012, 21(3): 354-361.
Citation: LI Peng, CHEN Jie, CAI Tao, WANG Guang-hui. Hybrid dynamic model of polymer electrolyte membrane fuel cell stack using variable neural network[J].JOURNAL OF BEIJING INSTITUTE OF TECHNOLOGY, 2012, 21(3): 354-361.

Hybrid dynamic model of polymer electrolyte membrane fuel cell stack using variable neural network

  • Received Date:2011-07-18
  • The polymer electrolyte membrane (PEM) fuel cell has been regarded as a potential alternative power source, and a model is necessary for its design, control and power management. A hybrid dynamic model of PEM fuel cell, which combines the advantages of mechanism model and black-box model, is proposed in this paper. To improve the performance, the static neural network and variable neural network are used to build the black-box model. The static neural network can significantly improve the static performance of the hybrid model, and the variable neural network makes the hybrid dynamic model predict the real PEM fuel cell behavior with required accuracy. Finally, the hybrid dynamic model is validated with a 500 W PEM fuel cell. The static and transient experiment results show that the hybrid dynamic model can predict the behavior of the fuel cell stack accurately and therefore can be effectively utilized in practical application.
  • loading
  • [1]
    Amphlett J C, Baumert R M, Peppley B A, et al. Performance modeling of the ballard mark iv solid polymer electrolyte fuel cell, i. mechanistic model development[J]. Journal of Electrochemical Society, 1995, 142(1): 1-8.
    [2]
    Wang C S, Nehrir M H, Shaw S R. Dynamic models and model validation for PEM fuel cells using electrical circuits[J]. IEEE Transactions on Energy Conversion, 2005, 20(2): 442-451.
    [3]
    Puranik S V, Keyhani A, Khorrami F. State-space modeling of proton exchange membrane fuel cell[J]. IEEE Transactions on Energy Conversion, 2010, 25(3): 804-813.
    [4]
    Gao F, Blunier B, Simoes M G, et al. PEM fuel cell stack modeling for real-time emulation in hardware-in-the-loop applications[J]. IEEE Transactions on Energy Conversion, 2011, 26(1): 184-194.
    [5]
    Sisworahardjo N S, Yalcinoz T, El-Sharkh M Y, et al. Neural network model of 100.W portable PEM fuel cell and experimental verification[J]. International Journal of Hydrogen Energy, 2010, 35(17): 9104-9109.
    [6]
    Puranik S V, Keyhani A, Khorrami F. Neural network modeling of proton exchange membrane fuel cell[J]. IEEE Transactions on Energy Conversion, 2010, 25(2): 474-483.
    [7]
    Li P, Chen J, Cai T, et al. On-line identification of fuel cell model with variable neural network[C]//Proceedings of the 29th Chinese Control Conference. Beijing: BeiHang University Press, 2010: 1417-1421.
    [8]
    Kunusch C, Husar A, Puleston P, et al. Linear identification and model adjustment of a PEM fuel cell stack[J]. International Journal of Hydrogen Energy, 2008, 33(13): 3581-3587.
    [9]
    Meiler M, Schmid O, Schudy M, et al. Dynamic fuel cell stack model for real-time simulation based on system identification[J]. Journal of Power Sources, 2008, 176(2): 523-528.
    [10]
    Li P, Chen J, Liu G P, et al. Hybrid model of fuel cell system using wavelet network and PSO algorithm[C]//Proceedings of the 22th Chinese Control and Decision Conference. Xuzhou, China: IEEE, 2010: 2629-2634.
    [11]
    O'Hayare R, Cha S, Colella W, et al. Fuel cell fundamentals[M]. Hoboken, N J: Wiley, 2006.
    [12]
    Pukrushpan J T, Stefanopoulou A G, Peng H. Control of fuel cell power systems: principles, modeling, analysis and feedback design [M]. 1st ed. London, UK: Springer-Verlag, 2004.
    [13]
    Springer T E, Zawodzinski T A, Gottesfeld S. Polymer electrolyte fuel cell model[J]. Journal of Electrochemical Society, 1991, 138(8): 2334-2342.
    [14]
    Amphlett J C, Baumert R M, Peppley B A, et al. Performance modeling of the ballard mark iv solid polymer electrolyte fuel cell, ii. empirical model development[J]. Journal of Electrochemical Society, 1995, 142(1): 9-15.
    [15]
    Correa J M, Farret F A, Canha L N, et al. An electrochemical-based fuel-cell model suitable for electrical engineering automation approach[J]. IEEE Transactions on Industrial Electronics, 2004, 51(2): 1103-1112.
    [16]
    Liu G P, Kadirkamanathan V, Billings S A. Variable neural networks for adaptive control of nonlinear systems[J]. IEEE Transactions on Systems, Man, Cybernetics, Part C, 1999, 29(1): 34-43.
    [17]
    Liu G P, Kadirkamanathan V, Billings S A. Stable sequential identification of continuous nonlinear dynamical systems by growing RBF networks [J]. International Journal of Control, 1996, 65(1): 53-69.
  • 加载中

Catalog

    通讯作者:陈斌, bchen63@163.com
    • 1.

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (916) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

      Return
      Return
        Baidu
        map