[1] Circle of Blue. Water crises again ranked a top global risk in world economic forum report [EB/OL]. (2020-01-15)[2023-01-10].https://www.circleofblue.org/2020/wef/water-crises-again-ranked-a-top-global-risk-in-world-economic-forum-report/.
[2] 中华人民共和国生态环境部. 国家适应气候变化战略2035 [R]. 北京: 中华人民共和国生态环境部, 2022.
[3] LIN J, KANG J, BAI X, et al. Modeling the urban water-energy nexus: a case study of Xiamen, China[J]. Journal of cleaner production, 2019, 215: 680-688.doi:10.1016/j.jclepro.2019.01.063
[4] BAUER D, PHILBRICK M, VALLARIO B, et al. The water-energy nexus: challenges and opportunities[R/OL]. US Department of Energy, 2014. https://www.energy.gov/articles/water-energy-nexus-challenges-and-opportunities.
[5] GLEICK P H. Annual review of energy and the environment[J]. Water and Energy, 1994, 19(1): 267-299.
[6] 田沛佩. 基于 MRIO 的水—能—碳耦合关系研究[D]. 北京: 华北电力大学(北京), 2021.
[7] AN Y, ZHANG L. The thirst for power: the impacts of water availability on electricity generation in China[J/OL]. The Energy Journal, 2023, 44(2). http://www.iaee.org/en/publications/journal.aspx.
[8] ZHANG Y, FANG J, WANG S, et al. Energy-water nexus in electricity trade network: a case study of interprovincial electricity trade in China[J/OL]. Applied Energy, 2020, 257: 113685. https://econpapers.repec.org/article/eeeappene/v_3a257_3ay_3a2020_3ai_3ac_ 3as0306261919313728.htm.
[9] ZHANG C, ZHONG L, FU X, et al. Revealing water stress by the thermal power industry in China based on a high spatial resolution water withdrawal and consumption inventory[J]. Environmental Science & Technology, 2016, 50(4): 1642-1652.
[10] LARSEN M A D, DREWS M. Water use in electricity generation for water-energy nexus analyses: the European case[J]. Science of the Total Environment, 2019, 651: 2044-2058.doi:10.1016/j.scitotenv.2018.10.045
[11] 王春艳, 田磊, 俞敏, 等. 电力行业水—能耦合关系研究综述[J]. 环境科学, 2018, 38(12): 4742-4748.
[12] LIU G, HU J, CHEN C, et al. LEAP-WEAP analysis of urban energy-water dynamic nexus in Beijing (China)[J/OL]. Renewable and Sustainable Energy Reviews, 2021, 136: 110369. https://econpapers.repec.org/article/eeerensus/v_3a136_3ay_3a2021_3ai_3ac_3as1364032120306572.htm.
[13] ZHANG C, HE G, JOHNSTON J, et al. Long-term transition of China’s power sector under carbon neutrality target and water withdrawal constraint[J/OL]. Journal of Cleaner Production, 2021, 329: 129765. http://www.socolar.com/Article/Index?aid=100091613670&jid=100000000464.
[14] ZHANG C, ZHONG L, WANG J. Decoupling between water use and thermoelectric power generation growth in China[J]. Nature Energy, 2018, 3(9): 792-799.doi:10.1038/s41560-018-0236-7
[15] WEBSTER M, FISHER-VANDEN K, KUMAR V, et al. Integrated hydrological, power system and economic modelling of climate impacts on electricity demand and cost[J]. Nature Energy, 2022, 7(2): 163-169.doi:10.1038/s41560-021-00958-8
[16] BYERS E A, COXON G, FREER J, et al. Drought and climate change impacts on cooling water shortages and electricity prices in Great Britain[J]. Nature communications, 2020, 11(1): 1-12.doi:10.1038/s41467-019-13993-7
[17] CHINI C M, STILLWELL A S. The changing virtual water trade network of the European electric grid[J/OL]. Applied Energy, 2020, 260: 114151. https://econpapers.repec.org/article/eeeappene/v_3a260_3ay_3a2020_3ai_3ac_3as0306261919318380.htm.
[18] CHINI C M, DJEHDIAN L A, LUBEGA W N, et al. Virtual water transfers of the US electric grid[J]. Nature Energy, 2018, 3(12): 1115-1123.doi:10.1038/s41560-018-0266-1
[19] ZHANG C, ZHONG L, LIANG S, et al. Virtual scarce water embodied in inter-provincial electricity transmission in China[J]. Applied Energy, 2017, 187: 438-448.doi:10.1016/j.apenergy.2016.11.052
[20] 廖夏伟, 甘奕维, 岑倩, 等. 黄河流域电力部门虚拟水转移及2030年电源结构优化研究[R]. 北京: 绿色和平, 2020.
[21] QU S, LIANG S, XU M. CO2 emissions embodied in interprovincial electricity transmissions in China[J]. Environmental science & technology, 2017, 51(18): 10893-10902.
[22] BAI H, ZHANG Y, WANG H, et al. A hybrid method for provincial scale energy-related carbon emission allocation in China[J]. Environmental Science & Technology, 2014, 48(5): 2541-2550.
[23] MARRIOTT J, MATTHEWS H S. Environmental effects of interstate power trading on electricity consumption mixes[J]. Environmental science & technology, 2005, 39 (22): 8584−8590.
[24] 电力企业联合会. 2020年电力工业统计资料汇编[R]. 北京: 电力企业联合会, 2021.
[25] LIAO X, HALL J W. Water management in China’s power sector[M].London:Routledge, 2020.
[26] TANG B, WU Y, YU B, et al. Co-current analysis among electricity-water-carbon for the power sector in China[J/OL]. Science of The Total Environment, 2020, 745: 141005. https://www.sciencedirect.com/science/article/abs/pii/S0048969720345344.
[27] MACKNICK J, NEWMARK R, HEATH G, et al. Operational water consumption and withdrawal factors for electricity generating technologies: a review of existing literature[J/OL]. Environmental Research Letters, 2012, 7(4): 045802.https://www.researchgate.net/publication/312470509_A_review_of_operational_water_consumption_and_withdrawal_factors_for_electricity_generating_technologies.
Baidu
map